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Preface

These are the lecture notes of my graduate class “Understanding Stellar Evolution”
(AST531) that I have been giving at the University of Washington in Seattle
in the spring quarter of almost every other year since 2004.

These notes have developed over the years due to comments and suggestions by students
and requests by the staff. (I am sure they will keep evolving).

They are written as “lecture notes” rather than in the form of a book. | have chosen for
this form because | find it more easy to teach from them, and I think it is easier for the
students to quickly see the important points in explanations and descriptions.

I have avoided (long) purely mathematical explanations. Although these may be appealing,
straight forward and physically correct, they often obscure the physical processes behind
them. So, where possible, | explain concepts in simple (?) or intuitive physical terms,
giving the reference where the more rigorous explanations and derivations can be found.
My goal is to give the students a “feeling” and “understanding” of stellar evolution.

From the reactions of the students, | sense that this is appreciated.

| am grateful for my Utrecht colleague Onno Pols, for his lecture notes on “Stellar
structure and evolution” and the more recent one on “Binary evolution”. They often
formed the skeleton of my lectures. I also thank Maurizio Salaris for providing me with the
pictures from his book “Evolution of stars and stellar populations”.

The first version of these lecture notes in Word were typed by Rachel Beck.

(The first versions were handwritten). Thanks Rachel for deciphering my scribbles with its
many equations. You did an excellent job. | am also grateful to Chris Suberlak, for
painstakingly finding all the errors and typos in the last version. | hope you found them all!

Most thanks go to the many graduate students who followed this course. | thank them for
their many discussions, comments and suggestions about this class, the notes and the
exercises.

--- | learned a lot from your constant questioning during the lectures ---

Henny Lamers, Seattle, June 11 2014
h.j.g..Lm.lamers@uu.nl
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There are few homework exercises after chapter 21.
That is the time (late May-early June) that the students are busy studying for their final exam.
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Chapter 1. Introduction and Observations

This section contains a recapitulation of the information about stars and stellar
evolution from introductory courses. It is meant to refresh your memory by
giving topics and suggestions for reading.

1.1 What is a star? (OP 1, DP 1.1) : read this

1.2 What can we learn from observations?
(OP1, DP 1.2): read this

1.3 How can we measure stellar parameters?
a. Distance
b. Mass
c. Radius
d. Surface Temperature
e. Luminosity
f. Composition
g. Surface Gravity
h. Rotation Velocity
i. Surface Magnetic Field

1.4 Mass Luminosity Relation (op1.2.2, DP 1.4)
- Valid for main sequence stars, massive giants (M> 20 Mg,p)
- Not valid for:
red giants, horizontal branch stars, AGB stars, white dwarfs, neutron stars.

b T T Fig 1.1
- + - The mass-luminosity relation
L + 4 . .
Al + 1 from double-lined spectroscopic
i + { binaries
~ i Aﬁf ] (Pols, Fig 1.3)
: 2k + —
f ]
s 0k |
. g _
5 +t
L+ i
1 I L1 1 1 I Ll | I |
-1 0 1

log (M / Msu)

10
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The mean slope in the mass range of 0.8 < M < 30 Mg, is 3.8. L ~Mm38

For masses above M>30 Mg,, the M-L relation is less steep, because of the increasing
role of the radiation pressure, as we will see later.

For masses below M < 0.8 Mgy, the mass luminosity relation is less steep because of
the increasing role of convection throughout the star and the different opacity.

1.5 Hertzsprung-Russell Diagrams (op 1.2.1, DP 1.4)

Young Open Clusters

Old Globular Clusters

Field stars
- magnitude limited samples
- distance limited samples

Q? What do they represent, why are they different?

OB A F G K M Fig 1.2
e
The H-R diagram of stars in the
solar neighbourhood measured
by the Hipparcos satellite.
oM -
=wt -
oL .
-0.5 0 05 1 1.5 2

11
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1.6 Summary of Stellar Characteristics
Assumptions
1. Star is spherically symmetric
- Physical quantities vary only in radial direction: P(r), p(r), T(r), etc.

Q? - Ignore effects of rotation and B- fields? When is this allowed?

2. Star is in hydrostatic equilibrium
Q? - When is this assumption justified, timescale?

.

Energy sources are
- Gravitational energy
- Thermonuclear reactions
- Internal (thermal) energy (important for white dwarfs)

4. Energy transport mechanisms
- Radiation
- Convection
- Conduction (white dwarfs)

5. Chemical composition
- Newly formed stars have homogeneous composition
- Assume initial composition (from surface spectrum)
X = Mass fraction of H
Y = Mass fraction of He
Z = Rest, mainly C, N, O
- Follow composition changes throughout the star during evolution

13



Astronomy 531 University of Washington Spring 2014

Chapter 2. Hydrostatic Equilibrium

2.1 Conservation of Mass (mass continuity equation)

dhl' Hfrlr‘

gL M,

}I’

M, _ "
= 4rtr<p(r)

Spherical shell of thickness dr:

2.2 Hydrostatic Equilibrium

Equation of motion of one cm® gas, density p in shell dr (Newton f = m. a)

d?r GM, dp

datz =~ r2 dr

. d?
inHE. =—=0, so
dat

dpP GM, 1

— = —p— = —p-gr| Wwithmasscontinuity p = _—; dM/dr
l
P GM,
dM,  4mr?
Consequence:
M, GM,dM, M, GM,dM,
P(M*) - P(M - O) - fo A7T12 fo 4—TL'R3
o)
GM? .
P. > p—— withM, = M(R) =M

This is a very safe lower limit because r << R near center. Better estimate:

B ~ 2
ar _ GMrpﬁM with P(R,) = 0 so PCzG:*/_J~G,Z*

dar T2 R,

The proportionality factor depends on density concentration.

14
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Estimate for the Sun: P,

7x1078(2.1033)2

O
Fe” = (7x1010)4

~ 1 10® dyne.cm? =~ 10!° atm!!

Actually: P® ~ 107 dyne/cm? because p, > p

Q? Could you have “guessed” that P.~GM?/R* based on simple physical insight?
Hint: consider weight of a column fromr=0-> R

Estimate of central T¢  (if Pgas >> Prag)

Ideal gas law: P ~ —2— - kT
umyy

KT, GM kT,
In center: P. ~ GM?/R* ~ PRTe _ GM  kTc
umy R umy
m GM
T, ~ wmy &Y
k R

0.5x1.71072%  7.1078x2.1033
1.4 1016 71010

Estimate for the Sun: TS ~ ~ 210K

the actual value: T® = 1.4 10K

Q? Why is this estimate of T, better than the one of P.?

H2.1 Homework

Improved estimates of central T, and P,

r

2
Assume that p = p, {1 - (R—) } (not a bad approximation)

- Calculate the mean density in the star
- Calculate central pressure (using the proper HE equation)
- Estimate the central temperature (using ideal gas law)
- Apply this to:
Sun: 1My, 1Ry
Massive O5V star: 50Mp, 20Rp
- Compare the values with those of structure models and comment on the
results of this comparison. (e.g Appendix C1)

15
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2.3

The Virial Theorem: consequence of HE

The virial theorem links the gravitational potential energy to the internal
(kinetic) energy of star as whole.

H.E.
dpP _ —GMr
dr  r2

multiply by 4nrdr and integrate from 0 — R

fR* GMr

fOR* AnridP = — [ " =—p - 4nridr

a) —J R (GMr) pAmnridr = Eyoc = total pot. energy of star (also called €2)

0 r

b) fOR* 4ntr3dP defineu =4nr3and v =P - dP = dv, du = 3 X 4nr

b=

a f: udv + f: vdu

remember f: d(uv) =uv |
(integrate in parts)

[} 4mr3dP = 4mr3P|§ — [P -3 x 4nr2dr = =3 [} P - dnr?dr
0 because r =0 and P(R+) =0

We can link P to the internal energy.

Ideal gas: P =nkT (n = nr of particles per cm®
u=3/2kTn =internal energy per cm®
So P=2/3-u

So f: 4ntr3dpP = -3 fOR P4mridr = =2 fOR udnr?dr = —2Ey,

Ewin or U = total kinetic enerqy of star!

From a)=b)

—E,ot = 2Ey,| Only for star as a whole (not for each layer individually )

Exin = — G) Epot

16



Astronomy 531 University of Washington Spring 2014

Q?

Q?

1
Etot = Epot + Ekin = - (E) Epot <0

The total energy of a star is negative.

This also applies to star clusters or clusters of galaxies in H.E.
That is how dark matter was discovered.

The easiest way to derive Kepler’s 3 law is by using this virial equation.
Show this.

Consequences for contracting stars

When a star contracts and decreases its potential energy, (Epo: becomes more
negative). The virial equilibrium requires

d Ekm / dt =- 05 d Epot /dt

1. So only half of the released energy goes into thermal energy for heating of
the star, the other half must be radiated.

2. When a star is out of nuclear energy and it compensates its radiative energy
loss by contraction, it needs twice as much because half of it is used for
heating the star!

Does the Virial Theorem apply to degenerate stars?
hints: a. Did we use the ideal gas law in deriving it?
b. How did we use it?
c. For degenerate gas P = 1/3u
If degenerate stars obey some Virial Theorem, what is it? What is the
consequence?

17
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Chapter 3. Gas Physics inside Stars

3.1 Definitions

Mean kin energy per particle -KkT for ions and electrons

Gas pressure for ideal gas P=nkT n = nr particles per cm®
(fully ionized gas, no molecules)

Mass fractions X e.g. Xu, Xpe X¢ ... etc

(X=Xpu, Y=Xye  Z=rest)
Atomic mass Aimy e.g. Ac=12
Nr free electrons Qi of element i (g; depends on r)
eg. (qc =1 atsolar photosphere
gc = 6 in solar core
Nr of atoms or ions per gram: X; X;/Aimy = 1/<m; >=1/umy
Nr of free electrons per gram: X;(X;/A;my) - q;
Define
mean mass per ion = yymy = 1/3,(X;/Amyg) - u; = {2 X;/A; 371

mean mass per electron = y,my = 1/2;(X;q;/Aimy) =
te = {2:q:Xi/A3!

mean mass per particle (electron or ions) = umy
1 -
pumy = - u={ZX;/A)( + g}t

Zi(Xi/Aimp)+Zi(qiX/Aympy)
Fully ionized gas:

qGu=1 que=2, q=05A4; (fori>2)

18
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H3.1 Homework
a. Derive a simple expression (in terms of X, Y, Z) for |, M, Me
b. Show that for fully ionized gas: Nr of electrons per gram is (1+X) / 2my and
Le = 2/(1+X)
(This factor plays a role in calculating the electron scattering coefficient)

H3.2 Homework
a. Calculate for a massive star the time it takes for a 60 My, star to increase its
mean internal temperature by a factor 5 (e.g. to go from H-burning at
T~2.10" K to He- burning at T,~10° K) if the luminosity remains constant.
(Use M, R and L from Appendix C)

b. Compare this with the Main Sequence lifetime.

19
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4.1

Q?

Q?

4.2

Q?

Chapter 4.  Stellar Timescales

Dynamical Timescale

1. Free-fall timescale: suppose pressure vanished suddenly
(restoring force = gravity)

Ar~gt? - t*~ Ar/g

R R3 t ~ 1
Ar ~R g = /W“’ ow ff_\/G_ﬁ

g~ GM/R?

2. Sound speed crossing time: suppose star is out of pressure equilibrium
(restoring force = gas pressure)

R ,R3 , 1 -
tsound ~ R/Cs T tsound "'m ~ oM ~ E - tsound =

c? ~kT /m

S|~
ol

Notice: free fall time =~ sound speed crossing time!! Why??

Together they are called:

1
Dynamical time scale T = —
y dyn o

This proportionality also applies to pulsating stars!

Estimate the dynamical timescale of the Sun.

Thermal Timescale = Kelvin-Helmholtz Timescale

How long can a star keep up its radiation if nuclear fusion stops and thermal
energy is the only energy source left?

E GM?
~ ~ _ Zpot _ GM"
TkH ~ Eu/L }TKH = . - TR /L

.. 1
Virial Ey, = —EEW
) . GM?
Kelvin-Helmholtz timescale Tk = oL

Also called: thermal — timescale

What is tky for stars like the sun?

20
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4.3

Q?

4.4

Nuclear Timescale

E
Thudl ul f MC &n /L

~

€y = efficiency = fraction of mass that is converted into energy €, = %m

H-fusion: ey = 0.007
He-fusion: ey =0.0007
fm = fraction of stellar mass that takes part in nuclear fusion
Sun: fy ~0.10
For MS stars: fy - €y =~ 107

Nuclear timescale: Toug ~ 1073Mc2 /L H-fusion

Touad ~ 107*Mc? /L He-fusion

For Sun:
M=2.10%gr, L =3.6"%rgls - 10, =3 x107sec = 10 %yr
fu X €y = 0.10 x 0.007 = 7 x 1014

The actual MS phase of massive stars (M > 30 Myg,,) is longer than
10 (M/Mgyn)/(L/Lgur) yrs , by factor ~ 3 to 5.
Can you think of a reason ?

Comparison of timescales

Tayn K T K Tyyd Sun: 1 hr << 3.107 yr << 10" yr

So:
- except for explosive phases, stars are always in quasi-hydrostatic equilibrium!
- contraction phases last about 1% of nuclear phases

Homework

Calculate dynamical, thermal, nuclear timescales and their ratios of
- MS star of 1 Mgy

- MS star of 50 Mgy,

- Red supergiant 20 Mgy,

- AGB star

- White dwarfs

and comment on the consequences of these results.

(For data of AGB stars: see Appendlx F)
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Chapter 5. The Equation of State
5.1 Gas Pressure

The equation of state (EOS) describes the relation between P. T, p

Fig 5.1 Consider particles in box 1x1x1 cm?

\\> Calculate the force on one side (1cm?)

| // by the collisions (momentum exchange)
< e of all particles per second. (op Fig3.1)

l\

[} \\

Simplified : assume all particles have the same speed v
time between collisions on same side:
At = 2l/vcosB = 2/vcosb (I = 1 for 1cm®)
momentum transfer per collision
Q2 Ap = 2p cos 6 Why 2?
momentum transfer per particle per second =
Ait-Ap =v-p-cos?f
integrate over all possible angles for an isotropic velocity distribution

T2 .o a2 1 3o|m/2 1
J, " sin6 - d6 - cos 0 = - cos®0 0 =3
multiply by total nr of particles (n= particle density)

P=1/3v.p.n

Better: general distribution of velocities and momenta

P=1/3 fooo v.p.n(p).dp

1/3 from integration over all possible angles: isotropic
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Total pressure:

P = Pion + Pelectr + Prad = Pgas + Prad

This is also expressed as:
Pgas = BP with 0<B<1 B =0 : Prag dominates
Prad = (1 - B)P B=1: Pgs dominates

Almost all stars are dominated by gas pressure. Only in the most massive ones
(M > 30My) is radiation pressure in the center important.

5.2 Ideal Gas (or3.3.2)
_ amp®dp  _p20mk
n(p)dp = e ———y pr/zmiT
= Maxwell distribution P= gf v.p.n(p)dp = nmt%
v =p/m

lon Pressure of Ideal Gas

P; = n;kT with n; = p/u;my with ui ~ X +£+%
__ RpT

p; = m R = mLH = 8.31 X 10”erg/K.mole = gas constant)

Electron Pressure of Ideal Gas

RpT
HUc

P, = n kT = with 1/pe = %(1 + X) only in stellar interior

Gas Pressure of Ideal Gas

RpT
Pps = Ntk T = u

with 1/ = 1/pe + 1/y;
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5.3

Q?

!

Degeneracy (Op3.3.5)

At very high densities, or very low temperatures, the quantum mechanical
effects become important. This changes the relation between P, T and p, i.e. the
equation of state.

a. Heisenberg uncertainty principle:
A X Ap > h in 1-dimension [h] = erg.s = [g cm%/s]
A Vol A% > h® in 3-dimensional phase-space
h *is the unit of phase-space volume

b. Pauli exclusion principle:
No two identical particles (same quantum-state) can exist at same time at
same place, i.e. in same phase-space volume h® > at most 2 electrons

(spin up and spin down.)

Simple 1-D demonstration:
What happens if you squeeze more and more particles in a volume?

;~:‘. —~,'—‘ SO CUPNYY [ e emn g Sy S—— Ma
n(\(t) ' ‘ % . g | 1
.. EC.D. : RD.
| : i
— c

Fig. 5.2 1 dimensional velocity distributions at increasing density
- Maxwellian
- particle degeneracy = P.D. = still Maxwell tail
- complete degeneracy = C.D. = rectangular distribution
- relativistic = R.D. = most particles havev~c = p.v=p.c

What is the role of temperature in the transition from Maxwellian to degenerate
distribution?
What is the role of the particle mass?
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5.3.1 Partial Degeneracy in 3-D distribution: or.fig32

Fig. 5.3 Electron momentum distributions

1 0+45

n(p)
.

L L B L B B B I N 8. T T L — T L
ne = 61027 em™3 __ 1043 __ T=0K __
— 6. — —
Ny I PF |
1 2 4L ]
= | PF |
— — //- —
210°K L / _
S
/ 1 / ]
A 210°K 210'K . 7 61077, 12108 |
g — L - cm cm -
T e M NP SN N P IR 0. e e e
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 L0
10—1.1 10—1;
P P

Figure 3.2. Leff: Electron momentum distributions n(p) for an electron density of n. = 6 x 10?7 em™ (corre-
sponding to p = 2 x 10* g/em™ if u. = 2). and for three different temperatures: T = 2 x 10’ K (black lines).
2% 10°K (red lines) and 2 x 10° K (blue lines). The actual distributions, governed by quantum mechanics,
are shown as solid lines while the Maxwell-Boltzmann distributions for the same n. and T values are shown
as dashed lines. The dotted line my,, is the maximum possible number distribution if all quantum states with
momentum p are occupied. Right: Distributions in the limit T = 0, when all lowest available momenta are
fully occupied. The blue line is for the same density as in the left panel. while the red line is for a density two
times as high.

5.3.2

Complete Degeneracy:

n(p) distribution is rectangular in nr per (cm® g. cm/s)

Electrons: n,(p) d3p = —— = = (4np2dp) if p<pr (F=Fermi)
AVol;  h3
n.(p) d°p =0 ifp > pp
Derive pe:
. . _ PF 3 _ PF 2 2 _ 81 3
Electron density: n, = [ " n.(p) - d°p = | —4np’dp = < pi

1/3

o o= (4)

Now we can find P with v = p/m,

81

1 1 prp* 2 .
Pe =§fp'v'ne(p)'dp=§f0FTz:l_e.ﬁ.4T[p2dp=15h3p1§' with p|:~n91/3

So: P, (C.D)~ne® independent of T !
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5.3.3

534

Q?

P,(CD) = K{(p/ue)*"?

dyne.cm™2

— 13
Kl = 1.00 x 10 W

ifu, =2 ie if X3=0
Extreme Relativistic Degeneracy:
most electrons have v =cand v.p =c.p
Pe ==[p-v-n(p)-4mpdp == [p-n.(p) - 4mp’dp
2c 2c

p - 1
=< [, 4np® -dp = < mpg with pgng

/3

So: P (R.D)~n¢"® independent of T.

P.(R.D) = K;(p/ue)*’?

5 dyne/cm?

o .
with K; = 1.24 10" 200

Partial Degeneracy (Not derived, just for completeness)
(See Maeder 7.7 for the derivation)

n(p) is not a rectangular profile but has a Maxwell tail

P,(P.D) = % (2mokT)3/% - kT - F3,,(W)

o  x3/2

All of this was for electron degeneracy.

Do baryons also become degenerate? (in particular He-nuclei or neutrons)
If so, at the same density as electrons?

Hints:

1. Energy exchange < m,v2 >= ZkT =< m,v2 >

2. Degeneracy occurs when d3p ~ h3/AVol ~ AVol ~ %
i.e. when p reaches some value that depends on the density
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5.3.5 The equation of state: completely degenerate electron gas

log P (dyn cm™2)

5.4

Fig 5.4: the transition in the EOS for completely degenerate electron
gas (o.p.Fig.3.3). The transition occurs at p = 10° Ue 0. cm™

Figure 3.3. The equation of state for completely
degenerate electrons. The slope of the log P-logp
relation changes from 5/3 at relatively low densi-
ties, where the electrons are non-relativistic. to 4/3
at high density when the electrons are extremely
relativistic. The transition is smooth. but takes
P P R B R place at densities around py, = 105, gem .

Pu

||||||I||I|||
AN I Y T T T N T Y A W

o)
wn
=)

log p/tte (gem™)

Radiation Pressure

Momentum of a photon: p = hv/c = n(p)dp = n(v)dv
velocity = ¢

1
Prag = Efp v.n(p). d3p

8mv?  dv

n(v)dv = S SRR Blackbody law = Planck function

SO

n(p)dp = 8:—:2% . %dp with (%dp = dv)

S0 Py = %fooo%- c - n(w)dv

P =21aT* a =2 - 3K _ 756105 erg. cm K
rad = 3 ¢ 15c3h3 g
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5.5 Limits of the equations of state

Fig 5.5: the regimes of the various equations of state in a p, 7' diagram. (o.p.Fig3.)

10 717 T T T T T T T 10 Fr—77 T T T T T T
B radiation i 1 r S - ':- T
oy - | — 8- L | —
1 100 1
L ! i L 10 ! i
| / /' AMam
= | ! 1 = 1 //,/ S T |
[=11] ~ 1 - =0 - y # /,— f ! 1 4
g | g .y |
- 6 ! — 6 ’ /// / / : —
L ideal gas degenerate ] | S ! i
4l NR | ER _ s - i _|
N Y T [T TP M I T T A I |: L1 AN N N T P T T O M T E L1
—10 -5 0 5 10 —10 -5 0 5 10

log p log p

Figure 3.4. Lefi: The equation of state for a gas of free particles in the log 7. log p plane. The dashed lines are
approximate boundaries between regions where radiation pressure, ideal gas pressure. non-relativistic electron
degeneracy and extremely relativistic electron degeneracy dominate. for a composition X = 0.7 and Z = 0.02.
Right: Detailed structure models for homogeneous main-sequence stars of 0.1...100 M have been added (solid
lines). The 1 M, model is well within the ideal-gas region of the equation of state. In the 0.1 M, star electron
degeneracy pressure is important. except in the outer layers (at low p and T). In stars more massive than 10 M.
radiation pressure becomes important. and it dominates in the surface layers of the 100 M, model.
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H5.1 Homework

Equation of State

Derive the limits/boundaries between the 4 types of the equations of state
(Prag, ideal gas, Complete Degeneracy, Relative Degeneracy) by
considering where in the (p, T) diagram the pressures are equal (P, = Py)

How do these boundaries change if we go from a star consisting of H to one
consisting of He?

Explain in words (physics!) why these boundaries are (in)dependent of T.
The figure above shows the limits of the EoS regions, together with the T-p

structure of several stars. Consider the consequences, in terms of the
conditions of the gas, the density and the radius of the stars.

H5.2 Homework

Radiation Pressure

Use the models of Appendix C1 and C2 to calculate the ratio Prag/Pgas in
the center of main sequence stars of 0.8 <M < 120M,
At what masses is radiation pressure significant (Prag/Pgas > 0.5)?
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5.6

Polytropic Gas
P =pY v = polytrope index

The structure of polytropic stars is easy, because there is no T-dependence. So
HE - P(r) and p(r)!

Historical importance: Eddington “guessed” that stars behave as polytropes; he
calculated the first model for the solar interior using the polytrope
approximation P ~ p‘”3 and found approximately the correct M, R and even L.

Which stars behave as polytrope?

a. Complete electron degenerate stars: because P ~ p°° ~n°?

b. Relativistic degenerate stars: because P~ p*®~n*?

c. Stars dominated by radiation pressure Ppag ~ T*
ideal gas P~ p P~P. - P~p*3
T~Pip

d. Stars with a constant ratio f = Py,s/Poc  (this is what Eddington assumed)
Prad = (1_ﬁ)P _)P"'Prad_’P"’,UAl'/3 (asabove)

5/3

e. Fully convective stars P ~ p>° (we will proof this below)

In all these cases:
- if gas behaves as polytrope P ~ p¥
- T~pr1
- and gas behaves ideal P~ pT T ~ po=D/y
If a star is a polytrope then:

H.E. defines the P(r) and p(r). If the star is not degenerate then T(r) = % : %

is also known, but T(r) defines the energy flow by radiation.

So: luminosity is known I (We will show this later)
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HS5.3

Homework

- The location of a modern solar model in the T, p diagram is shown in the
figure 5.5 and listed in the Appendix D. Can you estimate the best value
of y ? (Ignore the outer layers of the star.)

- Inthe first model of the Sun by Eddingtion (1928) he assumed that the ratio
Prad/P gas = constant. Compare the value of y that he adopted with the one
that you derive from the model. Comment on the result.

Show from the Solar model in App D how good/bad Eddington’s
assumption was.

- What is the best value of y for a MS star of 0.1Msun and 100 Msun?
(derive from fig 5.5). Explain why these values could have been guessed.

5.7 Proof that a fully convective adiabatic star is a polytrope

Assume that convection is adiabatic: convective cells have no energy loss or gain

Q?

First law of Thermodynamics: du + PdV =dQ
du = —PdV

Adiabatic condition: dQ=0
u = specific internal energy (in ergs/gram)
ideal gas: u=(3/2) NKT  N=nr particles per gram N=nV
P =nkT n= nr particles per cm® n=N/V - P.V = NKT

V = volume of one gram of gas = 1/p

du=—PdV — d (%PV) = _PdV - %PdV +§Vdp — —pav

>3pay =—-3yap - £ = 2%
2 2 P 3V

So

P~V_5/3 N P~p+5/3

for ideal gas P ~ pT
T ~ p2/3

Can a fully convective star be completely adiabatic?
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5.8  The polytrope index of partially ionized gas

If gas is partially ionized, then u # (3/2)NKT because part of energy goes into
ionization of atoms or dissociation of molecules!
Convective zones are often partially ionized (see later).

/3 .
Fig 5.5 The
polytrope index of
partially ionized
H-gas.
o " o
H nenbrat =" 0 os 4 ‘,H lomizen

h."/l“

Partially ionized gas reaches a minimum value of y=1.19 close to
half-ionization. (For the derivation see Pols: section 3.5)

Fig 5.6 The polytrope index of partially ionized H-gas for various densities (o Fig3.5)
The polytropic index y is expressed in terms of the adiabatic temperature
gradient A=dInT/dInP and y=dinP/dinp

1

-1
Aga =—yy so y=

1-4qq
A,4=0.4 corresponds toy = 5/3 and A,43=0.25 corresponds to y = 4/3

e S ——
04— ]
03 L ]

- F ]

<‘:r - -
02| ) N

L ", [} _
B /7 p=00001 7
0.1 - o P=1e06 .
- p=1e—08 =
0.0 L Lol | ] .
2 5 10+4 2 5 10*3

T (K)

Q? Explain why 4,,;,=0.4 at both the high and low temperature end.
Q? Why does the dip shift to higher T if the density increases?
Q? What is the physical reason that y drops in a partially ionized region?
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Chapter 6. Opacities in Stars

6.1

6.2

Q?

For understanding and calculating stellar structure, in particular the energy
transport by radiation, we have to know the absorption coefficient of the gas as
a function of density, temperature and composition. The absorption
coefficients for radiation depend on wavelength. However, for solving the
equation of radiative transfer inside a star we can use a wavelength-independent
mean value, which is called the Rosseland-mean opacity. Its

definition is derived below in section 6.7.

Electron Scattering : . incm?g

o. is the scattering coefficient per gram of gas. Q? Why is it in cm?/g?
Deep inside stars gas is fully ionized and electron scattering is the dominant
opacity

O = 0T ' M
or = 6.65-10725cm? /elec or = Thomson cross-section for electrons

n, = nrof electrons per gram
U.my = mean particle mass per electron

0, = L. — =22 =~ 040> =0.2(1+X) cm?/g

my HUe HUe

Free-free absorption: k; in cm?g

Free-free absorption of a photon by an electron that briefly interacts with an ion
(= inverse of Bremstrahling) ~ Y

Z = charge of ions i ™

n; = ion density in nr/cm®
ne = electr dens in nr/cm®

K per cm® ~ Z2.nyn,. T~7/2
Why is kg ~ nj - Ne

with n; = p/pumy
Ne =3p//iene
K per em® ~ Z2pT~7/2 fu;p,

So kg in cm?/g is

1+X
2

) E) o177/ cm? /g

Kg = 7.5 1022 (
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6.3

Q?
6.4

6.5

Bound-free absorption : ky incm?g

The Kramers bound-free opacity law is calculated by summing all possible
bound-free transitions (i.e. photo-ionizations) of many ions

e
hv A/W.‘ﬁ" ton

Ko = 4.3 X 10 (1+X). Z.p. T cm?/g

Notice that it is much larger than the free-free absorption.
Why is kps ~ p? if it is defined per gram.

Bound-bound absorption: iy, in cm?/g
Very difficult to calculate (') due to numerous possible transitions, especially of

highly ionized Fe-group elements. The Fe group elements give a peak in the
opacity at around 10° to 10° K, depending on the density (see below).

Tables of stellar opacities in stars and stellar atmospheres
can be found on the web at
http://www-phys.lInl.gov/Research/OPAL/index.html
http://www.osc.edu/hpc/opacities/
http://webs.wichita.edu/physics/opacity/

Bl R
X=0.70 Flg 6.1
Z=0.02 )
4 The total
Rosseland-mean
53 i 1  opacity for solar
& 2 2 =—%3¢ | composition asa
jd function of T and p
on
3 1 (OPAL data)
0 i
1F s
L A 1 1 P N N A
4 5 6 7 8

Log T(K)
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Q?

6.6

6.7

Notice
1. Athigh T and low density all matter is ionized so k = o, =~ 0.3 cm?/g

2. As T decreases bound-free and free-free absorption gets important
with x~p.T-7/2. This explains the downslope to higher T.

3. At intermediate temperatures (depending on p) the gas is partly ionized >
many more possible electron transitions - huge opacities. This produces
the peaks around 10° K for densities 10° to 10 g/cm?, i.e. inside the stars.

4. Thepeak at 10* < T <10° K at very low density, 10° to 10 g/cm® is
due to H and is responsible for convection in the outer layers of cool stars!

5. The Fe-opacity peak around 10° to 10° K is important for Cepheids and
Wolf-Rayet stars.

6. Atvery low T < 10* K, the opacity (due to H') decreases steeply to very low
values, as k~T°, This explains the steep slope at low T. This is important
for stars on the Hayashi track, AGB-stars and red supergiants. It explains
why the effective temperatures of stars cannot drop below about 2000 K (as
we will see later).

Why does the peak shift to higher temperatures when the density increases?

Opacity in stellar atmospheres

There are other absorption/scattering processes in stellar atmospheres:

- H absorption (H with 2 electrons) in the solar photosphere and cool stars.
- Bound-bound transitions = abs/emission lines (blanketing of atmospheres)
- Dust absorption and scattering (AGB stars, OH/IR stars)

- etc.

We will not discuss these in the context of stellar structure. They will later be
discussed in the context of stellar winds.

Rosseland-mean Opacities

All opacities mentioned in this section are independent of frequency.
In reality, the absorption coefficients depend on frequency. For instance
free-free absorption is proportional to k~ A2
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6.8

Q?
Q?

Q?

For the calculation of the stellar structure, the frequency-dependent absorption
coefficients have been averaged over frequency in a particular way, i.e. by
using a weighting function of dB,/dT.

The resulting frequency-averaged absorption coefficients, mentioned above, are
called Rosseland-mean opacities. They are defined as

1 _ o 1 dBv oo dBv
a = fO x, dT dV/fo a1 dv

Simple derivation of Rosseland-mean opacity
We will show later that the flux ~ E, ~ —225%

Ky dr
Define F = [°F, dv
then F=f—id3v dv x <

Ky dT ar
—-1dB
For calculating stellar evolution we want to write this as F ~ ——
KR
1 dB dT 1 dBv 1 1 dBv
—_— — — —_— _) — —_— —_—
So Kkr dT dr f dv f Ky dT ~dv dr KR Ky dT v/dT

Mean-free Path of Photons : ¢

= [T RT

p ~ 1g/cm®

Inside a star:
Kk ~ 1lcm?/g

} [~ 1cm

After 1cm a photon is absorbed and reemitted or scattered
-> photons quickly lose information on direction
—> radiation must be (almost) isotropic!

If radiation inside a star is isotropic, how can there be a radiative outward flux?

For a Brownian-motion the average radial distance traveled by a photon

isr ~ #VN

(N = nr of random steps, ¢ = step length)

Use: v = C, I = Rqy to calculate the total length L and the time it takes 7, = L/c
for a photon to move from center to outside of sun.

- Is it still the same photon? (same A, Vv)?

- Does it mean that, if the suns nuclear fusion would stop suddenly, it would
take us t; seconds before we noticed?

- If not, how long would it take approximately before we noticed it?
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H6.1 Homework

a. Estimate the fraction of the radiation that is non-isotropic in the sun at
r=0.5Rp?

b. Could the same method be applied to derive the non-isotropic fraction of
the radiation at r = 0.9 Rp? Why or why not?

c. If you would apply the same method as in a. would you over or
underestimate the non-isotropic fraction?

Hint
Consider this radiation density at some point (the length
of the arrows is proportional to the radiative intensity in
that direction)

H6.2 Homework

Identify in the figure of the total opacity (Sect 6.5) the region where electron
scattering dominates and where ff + bf dominate.
Check the dependence on p and T in these regions.
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Chapter 7. Radiative Energy Transport

7.1 Eddington’s Equation for radiative equilibrium

A 3. 1.5 LI | padington’s equation for optically thick
- .., or optica ICK case
o R ington’s equation p y [nicK

a = radiation density constant = 4c/c
o = Stefan-Boltzman constant

=57x 1075 =2
) cm3.sK.

Intuitive derivation: (easy to remember)

A4Cm 1:(1-‘

Consider a cm® in a layer of 1 cm thickness
Flux from below: ~o T

Flux from above: ~o Ty

F= Net flux ~a (T} — T

a. F~—=(oT*)
b. F ~ “transparency of layer” ~ 1/ abs coeff per cm ~1/x

c. F=~L,/4nr?

Combine these three conditions:

—_—— — —

This is very similar to the real Eddington equation for energy transport by
radiation. The difference of a factor 3/4 comes from proper integration of the
radiation intensity over all angles.
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For me, the simplest way to remember Eddingtons equation is

L, _ 4 1 dor?t
4mr? 3 kp dr
Comments:

- OP 4.4.2 gives the full derivation in terms of radiative diffusion.

- In several textbooks the Eddington equation is derived by using the
radiation pressure. But this is confusing, because radiative transfer is not
related to the pressure balance but to the diffusion of energy.

Q? Free-free absorption and bound-free absorptions are real absorptions: photons
disappear. But electron scattering does not “absorb” photons, it just sends them
into another direction (with very small mean free path).

So: why does electron scattering play a role at all in radiative transfer and in the
structure of stars?

NB. Radiative equilibrium means that the energy is transported by radiation.
It does NOT mean that the gravity is balanced by radiation pressure !
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8.1

8.2

Chapter 8.  The Mass-Luminosity Relation
and the Eddington Limit

Thermal Equilibrium

We have seen that (almost) all stars are in Hydrostatic Equilibrium (H.E.)
Stars must also be in Thermal Equilibrium (T.E.), i.e. all energy generated in
a star per second by nuclear fusion or contraction, must be transported outwards
and emitted from the surface. If a star is not in T.E. it quickly heats or cools
inside. The transport of energy outwards can be by convection or radiation.
The layers are then in Convective Equilibrium (C.E.) or in Radiative
Equilibrium (R.E.).

The Mass-Luminosity relation for stars in H.E. and R.E.

Stars in H.E. that transport energy by radiation obey a strict mass-luminosity
relation. This can be derived rigorously for stars with a constant ratio Pad/Pgas
(i.e. for polytropic stars with y =4/3 in R.E.) but we will derive it intuitively.

We have seen that for stars in H.E.

GM
Tczﬁ._
R R

We have also seen that for stars in R.E.
Lr 4 1 doT*

Approximate
ar* T

—— ==, p = (41/3)M/R?, L./4nr? ~ L/4mR?
This yields
4 amR® 1 p*GtMm* 4 .
L~ +§%-47TR2 ';T_M'E'%?~%'M3 (radius R cancels 1)

So, for stars in H.E. and R.E. we expect the following
Mass-Luminosity relation

4

L~ ”7 - M3 - constant
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Q?

H8.1

a. Thisrelation is not valid for stars that are largely convective, i.e. lower

main sequence stars and red (super) giants, and for degenerate stars. Why?

b. Considering the simplicity of our derivation, it fits surprisingly well the
observed M-L relation for massive main sequence stars of 0.8 <M <30
Man : L~M* with x=~3.8 andso tyems~ ML ~M?2
The most surprising result is that we made no assumption about the
energy production process (type of fusion or contraction). This shows that
a star can only be in H.E. and R.E if it has some fixed luminosity:
independent of the luminosity source! The energy generation process has to
adjust itself to the required value, otherwise the star is not in equilibrium!

d. The dominant opacity in massive stars is electron scattering
Kk = 0 = 0.20(1+X) cm?/g. The values of k and p are
k=034and p=0.61if X=0.70and Y =0.30 and
k=0.20and p=1.33if X=0and Y=L1.

So a He star of 1Mg will be about 30x more luminous than a star of 1Mg
with normal composition. This explains why hot horizontal branch stars
are so much more luminous than the MS stars at the turn-off point, although
they have about the same mass. (See Fig 1.4)

e The M-L relation explains why stars of M > 1 Mg on the M.S. get brighter
during their H-fusion.

f. Italso explains why the evolution tracks of massive stars are approximately
horizontal, except in RSG phase when the star is largely convective.

Homework

1. Calculate the expected increase in luminosity when a star of 2Mg has
converted all its H in the core into He and the core contains 10% of the
stellar mass.

2. Compare the result with the stellar evolution tracks in Appendix E.

3. Calculate the expected value of the “constant” in the M-L relation.
Compare the predicted luminosity of a 10 My main-sequence star with the
value from evolutionary models. Which approximation that we made in the
derivation is mainly responsible for the difference?

4. Explain in words why stars in H.E. and R.E. obey a M-L relation that is
independent of the energy source. (What is the basic physics behind it?)

5. Consider three stars with the same mass. Star A is in radiative equilibrium.

Star B has a convective core that contains 30% of its mass. Star C has a
convective core that extends to 30% of its volume. Which one of the stars, B
or C will have a luminosity closest to that of star A. Explain this.
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8.3  The Maximum Stellar Mass and Luminosity:
the Eddington Limit

For a star with strong radiation pressure, the inward force due to gravity should
be larger than the outward force by radiation pressure because H.E. requires

__ GM(r)
— r2 .

| dp rad
dr

|dPrad
dr

|dPgaS
dr

p with Prgg = T*
Radiative Equilibrium requires

dPrgq _ d (aT“) _ =3, kpr LD

dr  dr\ 3 4

Combining these two equilibrium conditions gives (with r* and p, cancelling)

4mtcGM (1)
L(r) < —m
This must apply at all radii, also at R«

In massive stars electron scattering is the dominant opacity and it is about
constant throughout the star. This gives an upper limit for the luminosity of
massive stars

L, < 4mcGM /K = Lgqdington Eddington Luminosity

If a star would be brighter than Lg it would be blown-up by its radiation
pressure! The electron scattering coefficient o, = 0.20 (1+X) cm?/g.
Filling in the constants gives

4
Lp _ 1310 M 3 gy 10¢ M if X=0.70
L@ O'c M@ M@

The influence of the radiation pressure is often expressed in terms of the
Eddington factor

I =4 =—<_| with Ty<1 for stable stars.
Lg 4TCcGM

The empirically derived maximum stellar mass is Mpax = 160 — 300 My and
Lmax = 3 10°Ly in the cluster NGC6303 in the LMC (Crowther et al. 2010
MNRAS 408, 731).
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H8.2 Homework

a.

Derive the Mass-Luminosity relation for massive MS stars from the tables
in Appendix C2. Extrapolate this relation to higher masses by assuming
L/Lo = A(M/Mp)* and derive A and a.

Compare this with the expression for the Eddington luminosity and derive
the maximum mass and maximum luminosity of stars.

Now consider what happens deep inside a massive main-sequence star. The
luminosity of a massive star is generated in a small region, where

L) s 1./4mR? and M(r) < M,

4mr?
i. How can this region be stable against radiation pressure?

ii. What would happen if a region deep inside a star has L > Lgqq?

iii. The maximum stable models that have been calculated have M =~ 125
Mp and the maximum observed initial mass is 300 My. What is the
reason for the difference between these values and your result in (a)?
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9.1

Q?

9.2

Chapter 9. Convective Energy Transport

The convection criterium:
Is the star stable against convection?

Quialitative picture (K. Schwarzschild 1906)
Idea: Assume that a blob of gas inside a star, accidentally starts moving

upwards. If it keeps rising, that layer is obviously unstable for rising blobs =
convection! If it falls back immediately, that layer is stable.

WL s 8 Fig 9.1
T, %, ¢ \ T: LIS Schematic
blsk NI representation
¥ s hr'ﬂu»dh:; of convective
b . /" gl blobs.

TC'P. ? go ‘ :’ T: P.. g..

It is easy to show that the blob will keep rising (due to the Archimedes force)
. daT daT
if ar ar

b s

Show this, by considering a blob rising from ry to rp, with r, > ry.
Hint: blob is always in pressure equilibrium with its surroundings.

What is the reason for the absolute signs?

The Schwarzschild criterium for convection

Idea: assume that the star is in radiative equilibrium. = (dT/dr)s = (dT/dr)sa
(s for “surroundings”). What would happen to a blob of gas if it was
accidentally displaced upwards? If the layer is convective, the temperature
gradient will be adiabatic.

A layer will be convective if

[1dT /dr|,q < |dT/dr| o] = Schwarzschild criterium

or (easy to remember) : “the star always adopts the less steep
temperature gradient.”
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We will show below that the mean temperature gradient in a convective zone is
very close to the adiabatic gradient

Fig. 9.2 The Schwarzschild-criterium in a picture

}
S ] Is star stable against convection at
e [AT/AY) ., = STARLE

; « avzae) .

i N (AT/AF), 4 T UNSTABLE —m CONVECTION

H9.1 Homework

Show that the condition |dT /dr|,q < |dT /A7 | surrounding that leads to the rising
of hot bubbles, also leads to the descent of cool bubbles.

9.21  The Schwarzschild criterion in terms of the polytrope
index

We can also express the Schwarzschild criterum for convection in terms of the
local adiabatic polytrope index y = d¥nP /d¥np

Schwarzschild criterium: convection if
()7 (), (), > ()
ar/aq ar/yad ar Jad ar /Jrad

ainT 1, d¥npP . dfnpP
- 1-9)EE with == fromH.E.
dr Yy’ dr dr

For ideal gas T~P/p
Polytrope index P~p?

. . 1\ d¢nP 1 \ d¢nP
- — — — ﬁ
So: convection occurs if (1 yad) > (1 ymd) = Vad < Vrad

dT -1 T
hatall < (Yad ) Lo
drlrad Yad P

dp
dr

with 1.2 <y, <5/3 (Section 5.5)
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9.3

Q?

Convection in a layer with a p-gradient
The Ledoux-criterium for convection

We have derived the Schwarzschild criterium for convection by considering the
rise of bubbles in a medium of constant chemical composition. We now
consider the case of a chemically stratified star with the mean particle mass p
decreasing outward.

Why “decreasing”?

If a bubble (b) rises adiabatically and the surrounding (s) is in radiative
equilibrium, then the condition for convection to occur is:

dfnp
dr

dp
ar

dp
dar

|d{’np
ad dr

or |

ad S S

With P = RpT/u and p = uP/RT (R = gas constant)
we find that convection occurs if

(4),+ (4, - (49), > (49) + (42) - (42)
dar Jp dr /p dar Jp ar /g ar /g dr Jg
Since the bubble will remain in pressure equilibrium with its surrounding, and

since the composition inside the bubble will not change when it rises, we find
the condition for convection:

_ (dt’nT) > (dt’nT) + (di’n,u)
ar Jp ar Jg ar /g

So, if convective cells rise adiabatically in a medium that is in radiative
equilibrium and has a p-gradient, the condition for convection is

dénT dinT dn u Ledoux-criterium
>
dr lpag dr |l dr
Notice:

1. The Ledoux-criterium in a homogeneous layer is the same as the
Schwarzschild criterium.

2. For given adiabatic and radiative temperature gradients, a chemically
stratified zone in a star is more stable against convection than a
chemically homogeneous zone.

3. Convection is very efficient in chemical mixing. So the chemical
stratification disappears in a convective zone and the zone will adopt the
“mass-mean” average of L.

46



Astronomy 531 University of Washington Spring 2014

9.4

Q?

The mixing length:

How far does a convective cell rise before it dissolves in its surroundings?

A rising convective cell will dissolve into its surroundings, i.e. loose its
identity, when the temperature of the gas inside the cell gradually adjusts to the
temperature of its surrounding by the loss of radiation or heat at its boundary.
The distance a hot cell rises or a cold cell descends is called the “mixing
length”: #,,,. The proper calculation of this mixing length is complicated,
because it involves the proper 3-D (magneto-) hydrodynamical calculations of
convective flows.

As a reasonable guess, we can assume that it will be of the order of the
“pressure scaleheight” inside the star. We make a rough estimate of the
pressure scaleheight.

H.E. requires
a _  GMy . _ Pu 1dP _ GMy p
dr P T2 with P = RT pdr r2 RT

dfnP GM, u
ar 12 RT
Now if T and M, do not vary too strongly with distance and have mean values
of T and M, at distance r, we can approximate
P(ry + h) = P(ry)e P

2
We see that the pressure scaleheight is approximately | £p = % . ;7 ~ %

The mixing length for convection is usually written as €,,, = afp with a = 1.

N.B. The assumption of near-constant T is a rather bad one, because there
certainly is a temperature —gradient. The proper value of the pressure
scaleheight can only be derived when the structure of the star has been
calculated.

However, for our purpose of estimating and for “getting a feeling” of the
properties of the convection, the approximation is good enough.

The expression above also applies to stellar and planetary atmospheres, where it
is usually written as H, = RT/ug.
This expression also applies to the earth atmosphere.

Do you need extra oxygen when you climb Mount Everest (~10 km)?

47



Astronomy 531 University of Washington Spring 2014

9.5 The Efficiency of Convective Energy Transport

The convective flow has to transport the stellar luminosity.
We will make a simple estimate to get a “feeling” for the physical process.

_t-
XX, A

/ 4
+V‘ "‘: J
b ?
-V‘ )’\ % -

Fig. 9.3 The transport of energy by convection with velocity v, through a
sphere with radius r inside the star.
Suppose:
- half the matter moves up, the other half down
- upward velocity =v., downward velocity = —v, (Ve = Veonvection)
- the difference is temperature between up and downward moving cells is
Tup - Tdown = AT

Then:
the difference in thermal energy content per cm?® is (3/2)nkAT

Consider transport through a sphere at distance r from the stellar center
The amount of gas per sec through sphere r = flow 1 - |

Mass transport: 4mr?(pv.) — 4nr?(pv,) = 0 — No net transport of gas

Energy transport through the shell by convection:

3 3
Amr3uv, kT, — 4mriv, 1k Tgown = Ar?. nkAT. v, =
4mr?pR

T

4mr? ﬁ k.(AT.v,) = (AT.v,) = L,

So |AT.v, = (L,./4mr?).p.R/u

Estimate this for a “typical” star = Sun

r =~ 0.5Rp = 3.5 X 10%cm

p = 1g/cm?

p=05 AT.v, =~ 104%.1( extremely small!
R = 8.3 10”erg/K.mole

Lo = 4 x 10%3erg/s
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We show that AT. v, is extremely small.
If AT = 0.1T ~ 10°K - v, = 0.1cm/s <K Vgoyng = 107cm/s!
If v, = Veounq = 107cm/s - AT = 1073K << T ~ 10°K!

So either : convection speed is very slow
or: T-difference between up and down is very small
or: both (This is what happens in reality, as we will see below).

Q? What is the physical reason that ATv, so very small??
Hint: think in terms of gas-energy content.

9.6 The convective velocity

We can estimate the convection velocity by considering a convective cell as a
balloon.

Fig 9.4 Balloon analogy of convection for estimating convection velocity
Balloon : b =balloon, s = surrounding

Upward force = Archimedes force
Downward force = drag

Convective cell : cylinder approximation

V. A;'Af“.
A2 b = bubble
§ = surrounding
§s 1 Su<Ss ToT o= Ps
g,-?.:de T.-T$' AT AP=z0

Up: F1 = Archimedes force = V\olume X density differenge X gravity

'
Weight difference

GM(7)
r2

F1 = A.2.Ap. [cm?] - [em] - [g/em®] - [em/s?] = [g cm/s?]

Down: Momentum transfer of gas that is pushed away at top = ram-force

F| =psV. X VA = p;v2A [g/cm®] - [em/s]? - [em?] = [g cm/s?]

mom  volume of displaced gas per sec
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The bubble (or balloon) reaches a constant upward velocity when F1=F:
psVEA = A-£-Ap-g(r). So the speed of the convective cell is approximately

ve =g(r) £ (Ap/ps)

where £ ~ length of the rising bubble (cylinder)

We can assume |Aps/ps| = |AT/T| because of pressure equilibrium between
inside and outside cell.

v2 .t
So _c~g()
AT T

This equation, in combination with the one derived above from the energy
transport

AT.v, =~ (L./47r?).p. R/ 1L

provides expressions for both the convective velocity, v,, and the temperature
difference between the rising convective cells and the surroundings.
The values that follow from this exercise are derived in Homework H9.2

Homework

a. Calculate the thermal energy content of a cm® of gas in the sun at r = 0.9
Ro

b. Calculate the speed of sound at that location.

c. Assume that the temperature difference between the ascending and
descending bubbles is o7 of the mean local value, and that the velocity of the
bubbles is oy of the local sound speed.

Calculate the luminosity that would be transported by convection in this
case.

d. Compare this with the true luminosity, L, at 0.9 Re.

Derive the values of dy and Jt, and of AT and v,

H9.3

Homework

a. Sketch a diagram of outward decreasing u as function of r.
Adopt some lower limit and some upper limit for a zone that would be
convective according to the Schwarzschild criterium.

b. Show schematically where the convection zone would be according to the
Ledoux criterium for convection in a medium with a u-gradient.

c. Show how the u -profile would be changed by convection in these 2 cases.
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H9.4 Homework

a. Estimate the pressure scaleheight in the Sun at r = 0.9 Rsun, using the
expression derived above.

b. Compare it with the real pressure scaleheight of a solar model.

c. Comment on the differences

9.7 Typical values of convective velocity and timescale

Estimate for the Sun
(at r=0.5 Rsun, although the Sun is not convective there)

g(0.5Rp) =~ 10°cm/s? ,
£, ~0.1Rg = 7 x 10%cm Z—; ~ 3.5 x 108cm?/s?K
T ~ 2.10°K

We have derived before

AT.v, =~ 10*cm.K /s

3 . 31012 ~ 10t 7 cm
UC?/AT ~ 35X 108cm2}vc =3.10 s3 Ve = 10 s K vsoundlo s

Now find AT

& = 10*em.K /s > [AT = 1K| - AT/T ~ 1076 (very small!)

Ve

Rise time of convective cells

7%x10%cm 5
trise = £p/Ve = S 75 = 7 X 10%s = [trise ~ week

0.8 The superadiabatic T-gradient

The mean T-gradient of the surroundings must be steeper than (dT/dr)a of the
convective cells, otherwise the convection would stop.

ar

dr

daTr
dr

dTr
dr

dTr
dr

daTr
dar

actual

So define:

actual ad ad superadiabatic

We have seen that the superadiabatic T-gradient produces a difference of only
=~ 1K over a distance of a pressure scaleheight.
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ar ar
So — —
dr lsyperadiabatic drlag

So the real temperature gradient in a convection zone is

daTr
dr

ar

= Ead(1+e) with € <«'1

So we can safely adopt |dT/dr| = |dT /dr|,q in a convection zone!

9.9 Convection: Where and Why?

dar

. . . . . |dar
The Schwarzschild criterium for convection is |d— =

Tlrad

ad

. dr 3. 2
with |27~ (9T°) - (Le/dm?)

From this we can see that there are two reasons for convection:

1. Layers where k is very large = layers where H is partly ionized
(remember Fig 6.1)
This occurs in outer layers of cool stars:
- MS stars cooler than about FO
at type GO: a thin outer convection layer,
at type M : almost fully convective
- Red giants and supergiants : almost fully convective (except core)

2. Layers where L, /4nr? is very large = center of massive stars .
These stars have a high luminosity, created in small core.
- MS stars of M = 1.4M, because the CNO-cycle has a strong
T-dependence.

'0 T > ' Y ' —— T'—' 'y _"'-—————]
ﬂ"f,f'.t‘/"}/[ l { ‘;
'r ; A f \
o8y 27| | i
a1 | [ ;
O l

Ny \ | \ /. \
06 -7osf 1 2 5. 10 20 333
3 | | i P ERRatet |

2 Fod | l g )
04! l | 2548 i

-’_' | ' R T 1~
1 l - 4 - N ‘."_ %
A ' l | T 3 t‘ < .1..1’__-_.71:-
|| s
.: ’_." v }A ‘! ‘.) ‘ < !‘ L |
0'_&-‘-—--‘..———— u.__...a_ e “._..;_A.A

04 0 N4 03 12 18
Lag (*AM. )

Fig. 8.4 Schematic picture of occurrence of convection for MS stars (KW p. 213, fig 22.7)
Shaded area = convective. Vertical lines indicate stellar masses.
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Homework

Massive stars burn H via the CNO-cycle (to be discussed later).
This is very sensitive to T.
Explain why this gives massive MS stars convective cores.

Convective Overshooting

The Schwarzschild criterium is derived from the condition that the Archimedes
force provides an upward force.

At the top and the bottom of the convection zone there is no up/down ward
force, but the moving cells do not suddenly halt there. They will overshoot the
convection boundaries.

First observational indications ~1985:
nuclear products appear at surface of massive stars (especially He and N)
before mass loss has peeled the outer layers down to the mass of the old
convective core.
So: there must have been some mixing to layers higher than the convective
core boundary.

From several comparisons between observations < theory:
overshooting is about 1 pressure scaleheight !
(see Maeder and Meynet 1987 AA)

Difference between convection and overshooting:
Convection -> energy transport and mixing
Overshooting = only mixing (but the temperature gradient is radiative)
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9.11

H9.7

Chemical Mixing by Convection

Mixing in 2 star with an outer convection zone

L
1 < n.,::-.-l '
N\
\ N\ |
~ \:‘> »
—

Mixing in a star with a coavective core

| :
l f

-~

a1
'r...Ivv.l . -‘

’ \\\ ol ~ ! :

e << | A

—

— v

Fig. 8.5 Mixing in a stars with inner or outer convection zones

Consequence of mixing by convection and overshooting:

Massive stars on the main sequence have convective cores. Although the
nuclear fusion happens in the very center, the nuclear products are mixed
throughout the convective core. One of the immediate consequences is that H
is brought into the center from all over the convective core. This results in an
increase of the mass fraction of the star that takes part in H-fusion

(fm in the estimate of the nuclear timescale in Sect 4)

from about fyy =~ 0.14 for solar type stars to fy, = 0.75 for stars with M > 60Mo.
This extends the expected MS lifetimes of massive stars considerably.

Homework

Use the data shown in Appendix C2 (convective cores) to estimate as
accurately as possible the MS lifetimes of stars of 1, 5, 20, 85 My and compare
it with results of evolution models. What could be the reason for the systematic
difference?

Homework

a. Massive stars in the H-burning phase have a convective core.
The mass fraction of the convective core decreases during the main
sequence. Can you think of a reason why?

b. How does this affect the He-abundance distribution in the star as a function
of age during the MS phase. Explain this with a sketch.
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Chapter 10. Nuclear Fusion (ors)

10.1

During nuclear fusion two particles (i and j) react, which results in one or two
other particles (k and I). The particles involved have a charge Z and a mass A.

So the reaction is i+j—k+1
nuclear charge conservation: Zi + Z; = L + Z
baryon number conservation: A + A = A+ A

Reaction rates and energy production

The reaction rate is expressed as rijq (in nr per sec per gram)

The energy generation rate by nuclear fusion per gram per second is
Eijkl = Tijkl . Qijkl Q usua”y in MeV (1MeV =1.602 10-6 ergS)

where

Qijie = (m; +m; —my, —my)c?

is the amount of energy produced by one reaction.

The term in brackets is the mass-defect of the reaction, i.e. the mass that has

been converted into energy. Q corresponds to the difference in binding energy
of the nuclei involved in this reaction.

b SO , : Fig 10.1

| s i The average binding
energy in MeV

per nucleon

(proton or neutron)
as a function of
atomic mass.

(Fig OP6.1)

fusion

AVERAGE BINDING ENERGY per NUCLEON
o

.......

S TR T 30 52) Qb IiO 150 180 210 240
MASS NUMBER A

In the rising part of the curve, fusion produces energy. In the descending part of
the curve fusion requires energy but fission produces energy.
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Explain in why the cosmic abundance of Li, Be etc. is low.

University of Washington

Spring 2014

The mass defect can conveniently be expressed as a fraction of the mass that

goes into the fusion process. This is the the mass defect fraction: Am/m

For instance, for H — He fusion : Am/m = 0.00712
For He — C fusion : Am/m = 0.00065

The table below gives the masses of isotopes involved in the most important
nuclear fusion reactions in stars (o tl 6.1)

element 7 A M/, element 7 A4 M/my, element 272 A4 Mimy,
n 0 1 1.008665 C 6 12 12.000000 Ne 10 20 19.992441
H 1 1 1.007825 6 3 13.003354 Mg 12 24 23.985043
1 2 2014101 N 7 13 13.005738 Si 14 28 27.976930
He 2 3 3.016029 7 14 14.003074 Fe 26 56 55.934940
2 4 4.002603 7 15 15.000108 Ni 28 56  55.942139
Li 3 6 6.015124 0] 8 15 15.003070
3 7 7.016003 8 16 15.994915
Be 4 7 7.016928 8 17 16999133
4 8 R.005308 8 18 17.999160
H10.1 Homework

a. Calculate the mass defect fractions of the following relations

4'H = *He
3%He — °C
12C + 4H€ N 160

2°0 — 2°Si + *He

2 25i — *°Fe

b. Notice the trend and discuss what this trend implies for stellar evolution.
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10.2

energ)

Thermonuclear reaction rates and the Gamov peak

lons have a positive charge, so they will repulse one another by electric
Coulomb-forces. To enable fusion, the particles have to overcome this
Coulomb barrier.

Figure 6.2. Schematic depiction of the combmed nuclear and Coulomb po-
tential. shown as a thick line. The potential is dominated by Coulomb repul-

sion at distances » > r,. and by nuclear attraction for » < »,. An incoming
particle with kinetic energy £ ar infinity can classically approach 1o a distance

E re. The horizontal lines for 0 < » < ry, indicate energy levels i the compound

nucleus formed during the reaction. The ground state is at energy —E,,.. the
quasi-stationary levels with £ > 0 are broadened due to their very short life-
times. If the mcoming particles have energy £’ comresponding to such a level
they can find a resonance in the compound nucleus (see text)

Fig 10.2 The tunneling effect through the Coulomb barrier (op Fig6.2)

The velocity of the particles follows the Maxwell distribution. Only the fastest
particles have a probability of overcoming the Coulomb barrier. But their
number decreases rapidly with velocity v or energy E as

N(E) ~ exp(— E/kT)
The quantum mechanical tunneling effect allows particles whose energy is
smaller than the Coulomb barrier to overcome this barrier. If it was not for this

effect, the fusion process in stars would require a much higher T than in reality.
The tunneling probability P; increases with energy as

P.(E) ~ exp(—72)

where b is a constant that depends on the reaction. The net result is that the
reaction rate scales with the product of the two functions, and shows a peak,
called the Gamov-peak

R(E) ~ N(E) - P(E) ~ exp(——=-=)
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Fig 10.3
The Gamov peak is the
result of the product
of two functions:
the number of particles with energy
E, which decreases with E, and the
p probability for tunneling, which
- increases with E.

Because of the strong dependence of the Coulomb barrier on the charge of the
fusing ions and on the combination of the Maxwell energy distribution and the
tunneling effect, the reaction rates of the fusion reactions depend very strongly
on temperature. For instance

H — He (p-p chain) T=110" e~T*
H — He (CNO-cycle) T~210" ¢e~T“
He — C (3a-process) T=110%8 &~T%

NB: The reaction rates are not really power laws of T, but can be approximated
by partial power laws. The exponents of the T-dependence given above are
the exponents near the T-range of the fusion reactions in stars.

10.3  Abundance changes

The change in abundance per second of element i due to this reaction can be
expressed as

axX;/dt = =1y - Aimy,

where my, = m¢ /12 is the standard atomic mass unit (amu).

If element i is involved in more fusion reactions, some of which destroy and
others crate i, then the change in abundance should be written as the sum of all
possible destruction reactions (- sign) and all formation reaction (+ sign).

ax;

ar Aimu{Zx —Tisx T Zy +ry—>i}
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10.4 H-He fusion

There are two major routes for converting H into He in stars :

- the proton-proton chain (pp-chain)

- the CNO cycle (there are actually two main cycles)

Although the net reactions of these two routes are the same, they have very different
effect on the abundance evolution of the stars.

10.4.1 The proton-proton chain

At5<T <15 MK, H is predominantly fused via the proton-proton chain

H +H" >°D+e" +v

‘D+H" > He+y

*He +°He > *He + H" + H'

Net: 4H - *He +2e* +2 v+ 2y + 26.73 MeV

The positrons annihilate with free electrons to give e* + e — 2y

The energy production rateis : €,, ~X*-p-T* erg/gsec.
The neutrinos carry off about 1% of the energy

Q? Why is ey, ~ p* 22 Whyis e, ~ X2 22

There are actually 3 variations of the pp-chain, but ppl is the most important
one for stellar evolution. The net effect of all 3 reactions is the same.

'H+'H—>-"H+e* +v
‘H+'H— ‘He +y
"HL‘*".HL"—» lHC+:_'IH ‘;HC+ ch—»-BC:‘)'
ppl e N
Be+e” — 'Li+v "Be+!H— SB+y
"Li+'H — ‘He + *He EB = *Be+et + vy
*Be — *He + *He
’ppz

pp3
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10.4.2 The CNO- cycles

At T > 15 MK, H is predominantly fused in CNO-cycles (or bi-cycle)

2c 4 1t —)13N+y N + H —)15O+y

BN S>BC+e'+v 0 > BN+e'+v

B L1t —)14N+y 15\ + H* _)160+y

UN + 1Y _)150_'_7 160 + H* —)17F+y

0 > BN+et+v YF >0 +e"+v

PN+H"  >™C+'He YO+H" > MN+'He
Net: “H+ > “He + 2¢" + 2v + 3y

The positrons annihilate with free electrons to give " + e — 2y
Q? What is the net reaction of these two cycles?

Y

20 4 1H - BN+ 5
BN BC4et +v
13C 4+ 1H — BN + 5
~ 1N 4 1H — 150 + 3
50— PN +e* +1
N +1H — 2C + *He

- 190 4 y
160 + 1H — 1F + y
':-l_' — :-(,) e c?— +

70+ 'H— “N +*He

The energy production rate of the CNO-cycle is €cyo ~ X. X154 p - T8
where Xy, is the mass fraction of *N.

Fig 10.4 shows production rates of of the pp-chain and the CNO-cycle.

lgey
4

5+

-

Fig 10.4 (opFig6.5)

The energy production at density 1 g/cm®

and composition X=1.0 and Xcno=0.01.

At T ~1.5x10" K the contributions of the
CNO-cycle and the pp-chain are about equal.
In the Sun, at T, ~ 1.4x10°K,

pp ~90% and CNO ~10% of energy
production.
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In massive stars with M = 2 Mg the H-fusion goes mainly via the CNO-
cycles.

Q? The energy production by the CNO-cycle has a much steeper dependence on T
than the p-p-chain.
What does that imply for the extent and the mass of the region where H-fusion
occurs in massive stars?

10.4.3 Equilibrium Abundances of the CNO-cycle

The CNO=cycle is a cyclic process that quickly reaches equilibrium.
This has two important consequences:

1. The total number of C+N+O ions is conserved (CNO is just catalyst)
2. Inequilibrium: all steps have to proceed at the same reaction rate
(nr of reactions per gram per second).

Therate , 1;,; ~ n; X g, , is the same for all steps.
However, some steps have smaller cross-section, so a higher number of those
ions are needed to keep the rate the same as for other steps.

Q? Can you think of some consequences in terms of surface abundances of stars?

Define the lifetime of a nucleus in this process as
(i) = n; / |dn;/dt| =n; [ 1y; with n; in nr/gram
and the reaction rate rj in nr/gram.s

All reaction rates are equal so ni/n; = 7y/7j etc.
At T = 2 x 10’ K, the equilibrium of the reaction cycle implies

T(PPN) « t1(1B3C) < 1(*?0) K T(MN) & Tpye
35yr  1600yr 6600 yr ox10°yr  ~10%yr
longest

In equilibrium: ni(*N) / ni(**C) = 140
The initial ‘cosmic’ composition is n(**N) / n(**C) = 0.27
So the ¥*N / **C ratio increases drastically inside the star due to CNO-cycle.

Q? How long does it take this cycle to reach equilibrium?
The two main abundance effects of H — He via CNO-cycle:
- Hdecreases and He increases

- 12C decreases and **N increases
Q? Which one is faster?
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10.5

Q?

Q?

Q?

10.6

He-fusion = Triple a reaction: at T> 108K

“He + “He < 8Be This is an equilibrium reaction !
‘He + ®Be — **C

3°He - “C + 7.3 MeV Mass defect Am/m=0.00065

The first reaction is an equilibrium reaction that results a very small fraction of
Be ions. The mean lifetime of ®Be ions is only 3x10™° sec!

The second reaction is possible at T =~ 10® K because of a resonance in the

He + Be reaction: the cross section as function of energy shows a peak.

This was predicted by Fred Hoyle in 1954 based on the cosmic abundance of C!

The energy production rate of 3a proces : €3, ~ Y3p? T40!

Why is €5, ~ p2? Why is €3, ~ Y3?

What would the dependence be if He+He— Be was not an equilibrium reaction.
Argue on the basis of Fig 10.3 and the table of isotopes that this is an
equibrium reaction.

What is the consequence of the very high T-dependence of the energy
production?

What does it imply for the mass of the Helium-burning core compared to that of
the H-burning core of a star with a given initial mass?

Would you exist if the **C nucleus did not have a resonant energy level around
8 MeV? Explain.

Towards the end of the He-fusion phase, when there is enough *2C, the
following reaction occurs:

2C + 4He — 0 + 7.16 MeV Am/m = 0.00048

C and O-fusion

The C+C fusion and the O+0O fusion process has several branches:

at T> 6x10% K at T > 1x10° K

120 + 120 9 24|\/|g + 'Y 160 + 160 9 328 + Y
> *Mg+n > %S +n
> ®Na+p+2.2 MeV* > 3P +p+7.7Mev*
> ®Ne + a + 4.6 MeV* > Sj + ¢ + 9.6 MeV*
> 0 + 20, > *Mg + 20

* These are the most probable reactions that are the major source of energy.
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10.7  Si-fusion and photo-disintegration

Above T = 1.510° K heavy nuclei can be destroyed by photons. The average A
of photons (Wien’s laws & = 0.4/T cm) is A4=3x10™° cm. The average energy of
photons is : hc/A ~ 10 8erg =~ 0.4MeV
This destruction of heavy nuclei creates mixture of massive nuclei,
suchas Mg, Si, P, S, plus p, n, a.

The net reaction is 22Si + %Si—>°Fe, but it goes in many steps, creating also
many other elements and isotopes. Most of the energy in these reactions is lost
in the form of neutrinos that leave the star.

The resulting equilibrium gives rise to the formation of Fe-group elements

with stable nuclei: *°F,, *°Co, *Ni
via e.g. 28Si(oz,\() 328((1,7) 36Ar(oz,ﬂ{) 4OCa(ow) 44Ti(ow) .. N

10.8  Summary of major reactions

Tfhrwhold . Eherg}' per
Nuclear Fuel  Process 10°K Products Nucleon (MeV)

H p-p = ~4 He 6.55
H CNO 15 He ' 6.25
He  3a 100 C, 0 0.61
C C+C 600 O, Ne, Na, Mg 0.54
0 0+0 1000 Mg, S, P, Si ~).3

Si Nuc. eq. 3000 Co, Fe, Ni <0.18

The reaction rates and energy production for stellar nucleosynthesis have
been compiled by the Lawrence Livermore National Laboratory and can
be found at http://www-phys.lInl.gov/Research/RRSN

10.9  Formation of Heavy Elements:
slow (s) and rapid (r) neutron capture

The photo-disintegration in the Si-fusion phase creates a mixture of neutrons,
ions (protons, He-ions, C-ions etc.) and massive ions (Fe, Co, Ni).

Because neutrons have no charge, they can penetrate (be captured by) ions, thus
creating neutron-rich isotopes. The isotopes resulting from the bombardment
by neutrons can be either stable or instable isotopes. The net result depends on
the neutron-flux, i.e. on the time between successive neutron captures by an
ion.
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10.9.1

10.9.2

Slow neutron capture in low mass stars (S-process)

If the neutron capture rate is relatively “slow”, a particle can capture neutrons
until it forms an instable isotope. This isotope will then suffer beta-decay

(n — p + ") until it reaches a stable isotope .

This process is shown in the figure below for a series of neutron captures,
starting with a *°Fe nucleus. The isotope *°Fe is instable and will decay to *°Co.
This ion can then start capturing neutrons again, until another instable isotope is
formed.

Fig 10.5

The formation

of *Co by

slow neutron capture.

In this way, a whole series of stable isotopes of heavy elements can be formed,
depending on the stable isotope of the element that started the process.

Typical elements formed by the s-process are: Zr, Sr, Ba, Pb.

Their enhanced abundance in stellar photospheres of certain AGB stars
shows that these stars must have gone through a phase that produced a
large neutron flux.

Rapid neutron capture in Supernova (r-process)

If the neutron density is very high and the capture rate of the neutron is so high
that the time between successive neutron captures is smaller than the typical
decay time of instable ions, the instable isotopes have no time for beta-decay
but keep capturing neutrons. In this way super-neutron-rich isotopes will be
formed. When the neutron flux stops, e.g. because the matter is expelled in a
supernova explosion, these neutron-rich isotopes will suffer a series of beta-
decays, until a stable isotope is reached. These final stable isotopes are called
r-process elements.

Typical r-process elements are: Eu, Au, Xe, Pt.
They can only be formed in supernova explosions.
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Both processes are shown schematically in an isotope-diagram, which shows on
the vertical axis the charge (Z) and on the horizontal axis the number of
neutrons (N) of the isotopes.

S-process r-process
RN oS
" -
Y. 1) % (0. 1)
slow rapl&

Fig 10.6 Schematic representation of the s and r process of neutron
capture and the formation of neutron rich isotopes. The grey squares
contain isotopes that can only be formed by the r-process.

Depending on the location of an isotope in this diagram, actually depending

on the stability of its neighbours, stable isotope can be formed via the
r-process, the s-process or both.

10.10 Consequences of fusion reactions for stellar evolution

1. Each successive reaction has a higher Coulomb barrier, due to a higher
charge of the nuclei. So a higher T, is needed — the core has to contract.
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2.

Each successive reaction has a steeper T-dependence. This implies that it
will occur more concentrated in the core of the star, i.e. in a region that has
less mass.

Each successive reaction has a smaller Am/m, i.e. it produces less energy.
So the reaction rate has to be higher and the fusion faster (more reactions
per sec. gr) to provide luminosity L.

At T>10°K the neutrinos carry away a larger and larger fraction of the
energy. This also reduces the net energy production for the star and speeds
up the evolution.

All these effects result in two significant factors concerning stellar evolution:

A

Because the mass taking part in each successive fusion process is smaller
than in the one before, the chemical evolution of the star will develop into
an “onion-skin model”, with the most massive products (the latest) in the
center surrounded by concentric layers of less massive elements.

The lifetime of the successive evolution phases will be shorter and shorter.

Homework

The figure below shows a fraction of the isotope diagram of Pr
(= Praesodymium) until Gd (= Gadolinium).
Stable isotopes are indicated by enclosed squares.

a.
b.

®

Show the path of slow-neutron capture, starting at ***Pr

Show a number of paths of rapid neutron capture, starting at the same
isotope.

Which isotopes in this diagram can only be made by the r-process?

Give element and mass of isotopes.

Which isotopes can be made only by the s-process?

Which isotopes in this diagram can be made by both the r- and s-process?
Which isotopes in this diagram cannot be made by either r- or s-process?
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10.11
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Minimum Core Mass for Ignition
Each reaction requires a minimum temperature to be ignited (see Table in 10.8).

The central temperature of a star can rise if the star (or rather “the core”)
contracts. We have derived before (from HE and ideal gas law) that we can
estimate the central temperature of a star as

In the case of a contracting core, that we are considering here, (e.g. after H-
fusion) most of the central pressure is due to the mass of the core, as the layers
outside the core have a much lower density and contribute little to the pressure.
Therefore we can estimate the central temperature in this case as

_ 1/3
T, = ke . 2 yiith Rcz(%) = |1, ~ ke GuZ3 - pl/?

so T, ~ IVICZ/3 ) ,03/3
So, when the core of a star with mass M, contracts, its central temperature will
increase with its central density as Tc ~ pc-°

This might suggest that a star can create any high T, by contracting to small
enough radius. However this is not the case, because the star may become
degenerate before it reaches the required ignition temperature T; and then the
contraction stops. (Degenerate stars do not contract, unless mass is added).
So: to reach the ignition temperature of the next fusion reaction, the star
must avoid degeneracy.
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The temperature limit for electron degeneracy depends on density: as T ~ p§/3

(Sec.5.5: Fig 5.5 and Homework 5.1)

Degeneracy is prevented if Pigea gas > Pel. degen.

2 peTe > Ki (%)5/3 S| >5 (ﬁ)m

Q2 Why does this equation contain both u. and u, ?

PECENERALY 4/ F|g 10.7

e Te~ 6
o

Schematic evolution of
the central T and p. of
contracting cores of
various masses. The
contraction stops when
the core becomes
degenerate. This point is
indicated by circles.

LJTc

— lod g‘
So: to avoid degeneracy before Tig, is reached, the star must have a minimum

mass, (or rather a minimum mass of the contracting core).

Combining these equations, we find that the mass of a contracting core that
reaches a temperature Tig, and avoid degeneracy must be higher than

3/4

RK, } / 3/4
— .
et 62 e

Mcore > Mcrit ~ {

68



Astronomy 531 University of Washington Spring 2014

Fig. 10.7. The systematic evolution tracks of stars of different mass in the

(log p., log T,.) —diagram. The left figure shows the regions of the different
equations of state. The tilted thin lines in the right figure represent the
evolution of the central parameters for stars of 0.1 to 100 Mg . The thick nearly
horizontal lines indicate the temperature and density range of the central fusion
processes. (OP fig. 7.3)

LI B L L R L I R B L B B _IllllllllllllIllllllllllll'l'._l"ltl
1or T Sibi 2
radiation 4 1 L O—b—= — B
- . _ - Cb .
i He—b—lol .~ 1 i
1 s 8 e— —
. - - . & S
= 8 H 20 i T !
k=l L ! i
ideal gas d,egeélemre 1 L 10 g 2 i i
- _ MR OER L : ]
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-5 0 5 10
log pe
log pc

Notice that stars of 0.1 Me do not reach H-fusion, Stars of 1 Mg barely reach
He-fusion. Stars of M > 8 Mg reach all fusion phases.

Once the center of a star becomes degenerate, it can no longer contract, so the
density reaches it upperlimit. Its density can increase a little bit, when the
degenerate core becomes more massive due to fusion in the shell surrounding
the degenerate core, as we will see later. (Degenerate stars decrease in size and
increase in density when their mass increases.)

H 10.3 Homework

Suppose that the He-fusion requires a minimum core mass of about 0.3 Mg, .
What would be the minimum core mass for the next fusion phases ?
(see Sec 10.8)
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11.
11.1

Calculating Stellar Structure and Evolution

Assumptions

1.

Star is spherically symmetric

- Physical quantities vary only in radial direction: P(r), p(r), T(r), etc.

- Ignore effects of rotation and B fields? When is this allowed?

Star is in hydrostatic equilibrium
- When is this assumption justified, timescale?

Energy sources are

- Gravitational energy

- Thermonuclear energy

- Internal (thermal) energy (important for white dwarfs)

Energy transport mechanisms
- Radiation

- Convection

- Conduction (white dwarfs)

Chemical composition
- Newly formed stars have homogenous composition
- Assume initial composition (from surface spectrum)
X = Mass fraction of H
Y = Mass fraction of He
Z = Rest, mainly C, N, O
- Follow composition changes through the star as function of time

Homework

Stellar Rotation

Calculate the rotation speed of a star for which the centrifugal force would

reduce gravity at equator by 30% and 80%

Compare these values with the observed mean rotation velocities
Do this for the following stars:

a. Mainsequence star like sun

b. AGB Star

c. Mainsequence O-star

d. White dwarf
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11.2 Equations of Stellar Structure  (ors)

inr inm = M(r)
Euler coordinates Lagrange coordinates
inui am _ 2 ar _ _1
Mass continuity o = 4nrep am = i
Crep s d_P _ _Gm_p d_P _ am
Hydrost equilibrium ot T T
Energy generation* % = 4nrip(e — €, — Td—f) ;—; =€—€,— Td—f
ar_ _ 3 ke _L ar _ _ 3 x_ L
Energy transport dr ~ 4ac T3 anr? dm ~ 4ac T3 (4nr?)?
by radiation
or
by convection ar _ Va1 T dP ar _Yu"1, T 2P
y ar Yaa P dr am Yaa P dm
Equation Of State P = Pgas + Prad = Prad + Pe + Pion
Prad = §T4
P, = pRT/u, or Kj(p/u.)® (electr. degen.)
Py = pRT /w;
Absorption coefficient K = Kg + Kpe + K, K + Kpp ~ pT~7/?

Ke~p/ie~1+X
Nuclear energy production € ~ €,p™T" €0, m, n depend on the reaction

The term —e¢,, in the energy generation describes the loss
of energy by escaping neutrinos

Composition X(m), Y(m), Z(m) or Xij(m)with i=1... all isotopes

* The entropy term —Tds/dt expresses the energy generated by contraction (—Tds/dt > 0) or
lost by expansion (~Tds/dt < 0) with Tds = du — gdp.
If Tds/dt = 0, the star is in thermal equilibrium.
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Q?
Q?

Q?

Q?
11.3

Remarks and questions

These structure equations describe either
T, P, L, p, m as function of r (Euler)

or
T, P, L, m, r as function of m (Lagrange)

The Lagrangian equations can be derived from the Euler equations by using
dx dx dr - dr 1

— =—+— With —=——=

dm dr dm dm  4mpr?

Why is it more practical to use m as the free parameter than r?

How do we know which one of the two energy transport equations to use?

The term —T% in the equation of energy generation allows for the gain or loss

of energy when a layer respectively contracts or expands on a Kelvin-
Helmholtz timescale.

How can we calculate this term, considering that we are calculating models in
hydrostatic equilibrium?

The calculation of an evolutionary track consists of the calculation of a series of
subsequent hydrostatic equilibrium (') models, each with the chemical
structure, calculated by using the reaction rates of the previous model and
extrapolating it a certain time-step.

Which timesteps would you use?

Boundary Conditions

Four boundaryconditions are needed for the 4 differential equations as f(m).

r(m=0)=0

L(m=0)=0

P(m=Mx)=0 - actually, this defines R« (!)

T (m=M-) = {L(M,)/4nor?(m = M,) }/*

or a better approximation if you fit an atmospheric model for the outer layers.
The problem is:

There are two boundary conditions at r = 0 and two conditions at r = R«
So you cannot simply start integrating from the inside out or outside in.
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11.4

Q?

Solving the structure equations
The Henyey method: (see SC 3.2, p. 90-97)

Introduce the general parameter y' with i=1to 4, and define the parameters
y1 =r y2 =P, y3 =L, y4:-|-

Divide the star in a large number (N) of spherical shells with radii r; with j=1

to N. Each parameter is at any radius is decribed by V'

For each shell with radius between rj and rj+; the differential equations

that describe the stellar structure in Lagrangian coordinates can be written as

dyi y]i'+1_y]L:

— — 1 2 3 4
dm;  mye-m; fCYjros» Yiros Yiros Yj+os )

where f describes the dependence of the derivatives on the local parameters
at mass j+1/2. This results in a set of equations of the type

Ejl = % - f( y1'1+0.5 ) J’j2+o.5: 3’1'3+0.5' y ?+0.5 ) =0

Suppose that a good first order model is available, then the equations of the
next step can be written as a small correction to the first model. For instance
in Lagrange coordinates (with parameters r, P, L and T as function of m) the
value of T in the next iteration (T,=T; +A47) at a given value of m can be
written as a correction

AT = (dT/dr)Ar + (dT/dP)AP + (dT/dL)AL
with all the terms dT/dP etc. given by the partial derivatives of the right hand
side of the structure equations. For instance, dT/dP =umy/kp , if radiation
pressure can be ignored. The equation can also be written as

AT - (dT/dr)Ar + (dT/dP)AP + (dT/dL)AL =0
and similar expressions for the other parameters. A model agrees with the
four structure differential equations at all values of m if all differences 4 are
zero, i.e. at all values of m (=throughout the star) and for all parameters
(r,P,L,T). Thissetof linear equations can therefore be written as a large
matrix that can be solved with standard mathematical techniques.

The solution of these equations then give the values of y}' , Which are the
radii, temperature, pressure and luminosity as function of m. With these
values, calculate the nuclear processes in each layer per second of time.
Take a time step At and predict the abundances in each layer at time t+At.
These new abundances result in changes of the value of the function f at
each layer, that contain e.g. the opacity and reaction rates. Start the process
over again and calculate an equilibrium model at the next time step. Etc. Etc.
What time steps would you use?
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11.5  Structure of Polytropic Stars : P = Kp’

In this case, the temperature does not enter at all into the equations and there
are analytical solutions for certain values of y.

HE:

r2dr ) = —4nGp

r“dP _ Gm (r dP) ,dm

pdr_ p dr ii(r dp
d_ p dar

d

— = 4mtrip
(NB: m = M(r) here)

Now use polytrope relation P =Kp’ — dP/dr = Ky p’*dp/dr which gives

1d(.2 y-29p Ky 14 (2 y-23P) _ _
T2 dr( K]/p ) 47TGp - 4G rzdr(r P dr)_ P
Two practical substitutions:

a. y=1+1n - n=1/(y-1)

b. p=pd" 0 is dimensionless

Gives

(n+1).K 1 d dae
—Jmemm] 2 () =-6" - o

4GP, T2 dr dr
The term in square brackets = o = constant o in cm!!
Q? Although 6 is dimensionless, can you think of what it may describe in physical
terms?

Hint: p~0" — 6 ~p™"

Q2 What does an n = 0 — y = co model describe (in physical terms)?
Nn=o—y=1

Q? What is the range of 6 ?

For mathematical reasons (to make the equation look nicer), define
r = a& with & = dimensionless, o in cm
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1.4 (z240) _ _ _
Then |5 d;(f df)_ o7 —0=fn, o

This is the Lane-Emden equation that describes the structure of polytropic
stars.

This equation describes the run of density, p(r) in a dimensionless form, with
only one parameter: n = 1/(y — 1). There are analytical solutions forn =0, n =1.
For any other value of n the equation can easily be solved by numerically by

computer.
Fig 11.1
)/ = .
Q/€e : The density structure
n I of two polytrope
y o.sE models.
p n=3 —y=4/3
06 and
L ' n=1.5—-y=15/3.
04f
}.
0.2 ~
ok

Polytropic models were historically important because they could be calculated
(by hand and analytically) before the age of computers. Eddington ( ~1929)
calculated the first polytropic model, assuming y = 4/3, for the Sun and

4
obtained the Mass-Luminosity relation for stars: L ~ ”? - M3

H11.2 Homework

a. Explain to what types of stars do the polytrope models of n=1.5 and n=3
correspond to?

b. Explain in simple physical terms why a star with y = 4/3 has a more
concentrated density structure than a star with y = 5/3.
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12 Star formation

12.1  The ISM
The interstellar medium consists of gas in different phases.
Component T(K) n gcm‘3) nT
Molecular clouds 10-20  10°-10°  10° - 10’

Cold neutral gas 50 —100 20—50 10° - 10*
Warm neutral gas  10° - 10*  0.2-0.5 10°

Warm ionized gas  10* 01-1 10° - 10
Hot gas 10°-10" 10%-10* 10%-10*

The mean value of the pressure factor (nT) in the galactic disk is
nT~310° K.nr/icm?®

In most cases these components are in pressure equilibrium.
Q?  Give examples of cases where the ISM is not in pressure equilibrium and
explain why that is.

12.2  The Jeans mass for gravitational contraction

Let us consider a spherical homogeneous cloud of mass M and radius R with
temperature T and density p.

If the cloud is in hydrostatic equilibrium, i.e. neither expanding nor
contracting, the virial theorem applies : E yin = -1/2 Epot With

Exin = (3/2) KT (M / uumy)
and

GM?
R

_ M Gmy _
Epot_'fo Pl dmr ="

v|lw

where we used r =(m,/M)/3 for a constant density medium. Check this!
If -1/2 Epot > Exin then gravity wins from the gas pressure and the cloud will
contract. This is the case if

5kT R .
- - where Mj is the Jeans mass
G

umg

M > M,
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Substitution of

3 \"*/m
R= (o) ()
4dumy n

yields

” _(3)1/2 sk \2 773\
T = \4rm Gm4/3 u4n

H

1/3

So

73\ /2
M, =~ 100 — M
g (u‘*n) ©

The higher the temperature, the larger Mj, so the more massive a cloud should
be in order to collapse. That is why the clouds that contracted in the early
Universe must have been very massive. These formed the proto-globular
clusters.

Q?  What is the typical Jeans mass of a cloud of neutral hydrogen with a density of
n=1cm?and T=10°K?

a. Assume that the different components of the ISM are in pressure
equilibrium. What would be the Jeans mass of clouds forming out of
1. cold neutral gas
2. warm neutral gas
3. warm ionized gas

b. How is it possible that molecular clouds are not in pressure equilibrium
with their surroundings?

c. Giant molecular clouds have masses of order 10° Mo. Show that they are
forming stars.
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12.3

The collapse of molecular clouds

When a cloud has a mass higher than the Jeans mass it will collapse. This will
occur approximately on a free-fall timescale.

1 1
ter =~ (Gp) 2 = 1.10%(un)"2  yr

If clouds did not have a cooling mechanism, they would contract adiabatically
with temperature increasing as T ~ p?/3. Because the Jeans mass is

M, ~ (T3/p)*/2, its value would increase as the density increases. At some
point the Jeans mass would reach the cloud mass: i.e. the cloud would be in
virial equilibrium. At this moment the cloud would be in hydrostatic
equilibrium and the contraction would stop.

Fortunately, however, clouds do have a cooling mechanism. (If not: star
formation would be extremely inefficient and we would not exist!)

Clouds cool by radiative losses. For this to be effective it has to emit IR
photons, because the clouds are optically thick for UV and visual photons. The
main cooling agents in molecular clouds are: emission by molecules and
emission by dust.

Cooling by molecules

Collisions between molecules in high density gas results in collisional
excitation to higher rotation or vibration levels. An excited molecule can fall
back to a lower rotation or vibration level by emission of a photon (photo de-
excitation). The dominant transitions are in the IR or sub-mm range, and these
photons can leave the clouds because the cloud is optically thin at IR
wavelengths. So the net effect is: kinetic energy of molecules is transferred
into excitation which results via photo de-excitation in IR and sub-mm photons
which escape. This is a cooling mechanism.

Cooling by dust

If the density in a cloud is high and the kinetic temperature is low enough

(T <1200 K) dust may form. Collisions with molecules and dust absorption of
trapped photons (UV, optical or near-IR) heat dust grains. Dust grains emit
almost like blackbodies with a radiation temperature less than ~1000 K. This
results in a large IR flux that leaves the cloud. Therefore molecular clouds are
very strong IR emitters. So the net effect is: kinetic energy of molecules and
optical radiation is converted into IR radiation that leaves the cloud. Thisis a
cooling mechanism.
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12.4

These cooling mechanisms prevent the adiabatic heating of a cloud when it
collapses. The potential energy gained by the contractions is immediately
emitted, and so the collapse proceeds approximately isothermally. The
increasing density of isothermal clouds implies that the Jeans mass decreases,
and substructures of the cloud can start to contract. This results in a
fragmentation of the original cloud that splits up into fragments that may split
up again. This fragmentation continues on a faster and faster timescale,
because the free-fall timescale decreases as ~n 2 as the fragments get denser.
Eventually the density in the clumps will become so high that they become
optically thick for IR radiation. When that happens, the cooling mechanism is
switched off and the collapse continues adiabatically. This results in a T-rise
and subsequent increase of the Jeans mass to the actual mass of the clump. At
this point the fragment reaches hydrostatic equilibrium. Observers call these
fragments clumps.

Fig. 12.1 Schematic figure of the fragmentation of a collapsing
molecular cloud. As the cloud contracts almost isothermally, the Jeans
mass decreases and fragments of the cloud start to contract, giving rise
to a clumpy structure of the cloud. The clumps evolve into stars.

The mass distribution of the clumps sets the initial mass function (IMF) of the
resulting stars. Observations show that the IMF of the clumps has the same
shape as the IMF of the stars except from a constant ratio. So not all the mass
of a clump ends up in the star. (The stellar IMF will be discussed in Sect. 12.8)

The end of the free-fall phase.

At the end of the free-fall collapse, the center of a clump reaches equilibrium
first, while the surrounding gas keeps falling onto the core. From now on it is a
proto-star. Up to this point the temperature is so low and the density so high
that hydrogen is in H, molecules. The energy gained by the contraction is used
for the dissociation and later the ionization of H and He. So the proto-star still
has a cooling mechanism, which accelerates the contraction.
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We can estimate the size of the clump when all H; is dissociated, and H and
He are both ionized by comparing the energy gained in the contraction with that
needed for the dissociation and ionization.

The energy needed for dissociation of an H, molecule is xy, = 4.5 eV, and the
ionization energy of an H atom is x; = 13.6 eV, with 1 eV = 1.602 10™*? ergs.

The total energy needed for dissociation and ionization of a cloud consisting of
H, molecules with composition X =0.7 and Y =0.30 is

M X 58 M 46 M
Edis = m—H{EXHZ + XXH} =1.310 M_O eV ~=2-10 M_Q ergs

This energy is provided by the contraction in the form of potential energy

~ A ~ 4-10%8

1
AE, . =~ AGM? {
pot Rend Rend/RO

1 } GM? 2 (M/M@)2

Rena Rbegin

The constant A = 3/5 for a constant density cloud (see Sect 12.2). During the
collapse the proto-star will become centrally concentrated. So the factor A=3/5
is a lower limit. Let us assume for simplicity that it is about a factor = 3
larger, so A = 2.

Although the collapsing cloud loses most of the gained energy in the form of
far-IR photons, a fraction f of AE,,,, is used for dissociation and ionization.
Detailed calculations show that /'~ 1/3.

Equating the energy needed for dissociation and ionization Eg;s With f AE, .
we find that the proto-star is ionized when it reaches a radius of order

R/Rg ~ 100 M /M,

We see that a proto-star of 1Mg has a radius of ~100 R at the end of the fast
contraction and a star of 0.5 Mg has a radius of ~50 Re. The effective
temperature of the stars is ~3000 K so the luminosities are ~10%and ~2 10% Lo
respectively.

We can estimate the mean temperature inside the star by applying the virial
theorem (because at the end of the collapse the star reaches H.E.)

3 M A GM? —
T == - T ~—-—""—=.—
2 umy 2 R 3 k R

with M/R =~ (Hlo) Mgo/Rgand u ~ 1/2. Thisgives T ~ 7 - 10*K. So fusion
has not started yet.
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12.5

The mean density of a protostar 1 Mg and 100 Re is p = 107® g/cm3. At such
low T and density, the absorption coefficient is very high. See Fig 6.1. This
means that the energy transport by radiation would be very inefficient and
would require a high value of |dT /dr|,.q (Sect 7.1) So the star is almost
completely convective according to the Schwarzschild criterium.

So at the end of the fast contraction, when the star is ionized, it will be in
hydrostatic equilibrium and fully convective.

The contraction of a convective proto-star:
the descent along the Hayashi track

When the dissociation and ionization of the star is complete, the star is in
hydrostatic equilibrium. The star does not have nuclear fusion yet, but it has a
temperature gradient and so it radiates. The star must contract to cover this
energy loss.

At this phase the star is fully convective. We will show later (Section 15.5) that
fully convective stars occupy a rather narrow vertical strip in the HRD at

Tesr = 3000 K. This is called the Hayashi-line. Fully convective stars will
evolve almost vertically upward along the Hayashi line if they expand, because
L~T2%:R? with Tee ~ constant, or downward if they contract.

Proto-stars are contracting, so their luminosity decreases.

This part of their evolution path in the HRD is called the Hayashi track.

6 LN L L L L L L L L B L L L B Figurelz'z:

" + 1 Hayashi tracks for proto-stars
1] of 0.25<M /Mg <4 for
04 X=0.70, Y=0.28 and Z=0.02.
1 Notice that the lines are
1 approximately vertical, at Teg
I _ | =3000 K, but not exactly. At
- . 1 L 2 10Lg Ter decreases
oL N _| somewhat towards higher

; luminosity. (OP Fig 9.3)

ZAMS .

log L (Lsun)
l
|

4.5 4.0 3.5
log Tesr (K)

As the star contracts, its gas temperature and density increases. This results in a
drastic decrease of k and so the core of the star is no longer convective, but its
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12.6

energy transport goes by radiation. The star has developed a radiative core and
does no longer evolve downward on the Hayashi track.

We can estimate the radius of the proto-star at the end of the Hayashi track by
assuming that the mean gas temperature should be of order a few 10°K,

say 3 10° K, to be in the range of k = o, ~ 0.3 cm?/g (see Fig 6.1). Using
the estimate of the mean temperature that we derived above, we see that this

happens when the radius of the star has decreased by a factor ﬁgi ~ 50. So the

radius of a 1 Mg proto-star has gone down from ~ 100 Rg to ~ 2.0. At this time
the luminosity is L = 4nr2Te4ff ~ 0.5 L for a1 Mg proto-star. We can use
this value to estimate the duration that the star needed for descending the
Hayashi track. Because the star is contracting in hydrostatic equilibrium the
timescale for contraction is given by

_AEpot AGM?
tHayashi ~ I = IR ]
en

Because the luminosity decreases drastically during the descent along the
Hayashi track, we can take the logarithmic mean luminosity between the top
and the bottom of the Hayashi track for L, assuming a constant Teg S0 L~R?

1
L=4noTdR*=15 Ly if R = (Rip *Rbottom)® = 15Ro
This gives tyayasni = 2 10 yrs for a 1 Mo protostar.

So the descent along the Hayashi track of a proto-star of 1 Mg takes about
2 million years, and tyayashi ~ M ™ .

At the end of the Hayashi phase the star is no longer fully convective, but it
is goes into radiative equilibrium.

The contraction of a radiative pre-main sequence star:
from the Hayashi track to the main sequence.

The proto-star in radiative equilibrium has not yet started nuclear fusion yet, so
it will keep contracting to cover the loss of energy by radiation. However,
because it is mostly in radiative equilibrium and hydrostatic equilibrium, it will
roughly obey the mass luminosity relation. This means that the evolution track
is now approximately horizontal. The star moves to the main sequence. This
phase is called the pre-main sequence phase.

During this PMS contraction the convective region shrinks from inside out. At
the end of the Hayashi phase it was still mostly convective, but when it reaches
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the MS the massive stars have no more outer convection zone, whereas the stars
less than about 1 Mg, still have an outer convection zone on the MS.

During the pre-main sequence contraction, the star keeps approximately the
same luminosity as it had at the end of the Hayashi contraction phase.

We can estimate the duration of this PMS contraction phase because we know
the radius that the star has when it reaches the main sequence.

At the end of the contraction phase, when H-fusion starts on the main sequence,
the radius is approximately the main sequence radius. We will show later that
the radius on the MS is

Rys/Rp = (M/MQ)O'7
Substituting this into the expression for tpys we find

GM

2
tous ~ A o (/M) (R/R6) ™ (L/1L6) ™ = 6. 107 (/M) ™ yrs

where weused A~2, L~M?*® and R~M%",
This results in the following estimates

Mo tpms (estimated) tems (Model)
0.2 310° 7.310°
0.5 3108 2.1108

1 610’ 6.2 10’

2 110’ 2.910°

4 210° 0.5 10°

Notice that the simple estimate gives about the correct time except for the
lowest mass PMS. Notice also that these time scales are considerably longer
than the duration of the contraction on the Hayashi track.

Q?  Why is the phase of the Hayashi track much shorter than the PMS phase?
Q?  Which effects could be responsible for the deviation between estimated and
calculated lifetimes? (Hint: see Fig 12.3)
2 R - g —
r T

«.;
] !‘. /
7%

log L/le

Figure 12.3

Calculated PMS tracks for stars in
the range of 0.3 to 2.5My. The
dotted lines are isochrones of 10°,
310° 5 10° 10° 5 10° and 10" yrs.
The vertical lines near the 10° yr

Q-
- o 1 isochrones indicate the region of the
[ 3 D-destruction. The lines near the 10°
r %/ 1 yrisochrones, indicates the region of
B | W/ Li- destruction. (OP Fig 8.4)
; Y=0.28 Z2=0.019 MLT f;(
AN {
-2 r|._A__L JO VR VAT VA [Ny U T\ - .\1£I' -
4 3.8 3.4
10g Ten
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logh F

Notice that the PMS lifetime decreases toward increasing mass. This implies
that in an HR-diagram or colour-magnitude diagram of a very young cluster,
the more massive stars are already on the MS whereas the lower mass stars are
still on the PMS contraction tracks.

Low mass stars (M <2 Mg) on the radiative contraction phase are called T
Tauri stars : pre-main sequence stars of types F,G,K with strong emission lines
formed in an accretion disk around these stars.

Higher mass stars (M > 2 M) on the radiative contraction phase are called
Herbig Ae-Be stars : pre-main sequence stars of types A and B with strong
emission lines formed in an accretion disk around these stars

Figure 12.3 shows that PMS contraction track is not exactly horizontal in the
HRD but that L increases, by about a factor 3. Part of this is due to the
decrease of « as the star contracts and gets hotter (L~M3/K) and part is due to
the continuous increase of the mass via the accretion disk.

The tracks also show that a star that enters the MS and starts H-fusion will
adjust its radius, luminosity and Te slightly. This produces the little curl at the
end of the PMS tracks.

Fig 12.4 : Different phases of T Tauri stars (OP fig 9.2, after Maeder)

Figure 9.2. Schematic illustration of four stages

logi ¥

logh F

Class 111

logh F

10
A (um)

100

Classical T Tauri

o

Weak T Tauri

in the evolution of protostars and their circumstellar
disks. On the left, the stellar flux 1s depicted (shaded
area) and the contribution from the disk (dotted line).
On the right the corresponding geometry of the ob-
ject 1s shown.

Class 0 objects are very young protostars (< 10* yrs)
with almost spherical accretion at a high rate, enut-
ting in the far-IR and sub-mm range. Class I pro-
tostars correspond to an advanced stage of accretion
(age ~ 10° yrs), where the star 1s still embedded in a
massive accretion disk, while jets or bipolar outflows
are also observed. In class II the protostar has become
visible as a classical T Tauri star on the pre-main se-
quence (age ~ 10°yrs), while the accretion disk is
still optically thick giving rise to a large IR excess.
Class IIT stars are already close to the main sequence
(age ~ 107 yrs), with an optically thin accretion disk
and weak emuission lines. Figure from MAEDER.

84



Astronomy 531 University of Washington Spring 2014

12.7

The destruction of Lithium and Deuterium

At temperature of about 10° K, the small fraction of initial Deuterium (formed
in the Big Bang) is destroyed by the reaction

H+'H —°He +v+5.5 MeV

This occurs when the stars is approximately on the 10° yr isochrone.
Some time later, at a core temperature of about 2.5 10° K, i.e. when the star is
near the 10° yr isochrone, Li is destroyed by the reaction chain

°Li (p, y) 'Be (e,v) 'Li(p,y) °Be — 2 *He + energy

The stellar surface abundance of Li and D provides an important diagnostic tool
for studying the formation of low mass stars. This is because Li is only
depleted at the stellar surface if the convection was deep enough to include the
Li-destruction zone. Figure 12.3 shows that this is only the case in PMS stars
of M<1.4 Mg ! At higher masses, the Li-destruction occurs when the star is

no longer on the Hayashi track, so convection does not affect the surface
composition of Li.

H12.3

Homework

Estimate the duration of the Hayashi contraction phase and of the pre-main
sequence contraction for stars of 0.1, 0.3, 1.0, 3, 10, 30 and 100 M.
Estimate de radii at the beginning and end of the Hayashi contraction phase
and at the beginning and end of the pre-main sequence contraction.

Homework

Explain the difference in the Lithium surface abundance of stars on the main
sequence that had Lithium destruction during the Hayashi contraction
phase or during the pre-main sequence contraction phase. -------------=--=----

Brown dwarfs

We have seen that the collapse stops when a clump becomes optically thick for
IR radiation. This requires a minimum mass of about 0.01Me. So this sets

the lower mass limit of stars at 0.01Mg

We have also seen that the minimum mass for H-fusion is about 0.1 M¢ (Fig
10.7). Detailed calculations show that the actual mass limit is 0.08 Mg

Stars in the mass range of 0.08 < M < 0.01 Mg do not reach H-fusion:
these are the brown dwarfs.
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12.9  Summary of Star formation

Collapse of cloud = free fall phase i ~10°- 107 yr

Cooling by molecules and dust IR radiation

<T> low and about constant

Fragmentation of cloud into clumps

Start: when cloud exceeds Jeans mass

End : when H; is dissociated and H ionized
Characteristic: <T>~10° K, R/Rgun ~ 120 M/Mg

Proto-star = pseudo-hydrostatic contraction Tk~ 2 10°% yr

Fully convective because of low <T> and high «
Terr = 3000 K =~ constant
Hayashi track : approximately vertical in HRD
Start: when collapsing cloud is dissociated
Characteristic: R ~ 120 Ry, Te~3000 K, L~10° Lqyn
End : when <T>~10° K — low k — radiative equilibrium
Characteristic: R~ 2.5 Ry, Teff~3000 K, L~0.5 Ly

Pre-main sequence = pseudo-hydrostatic contraction Tk~ 7 10°% yr

Radiative equilibrium because of high <T> — low k

L about constant

Approximately horizontal track in HRD

Short phases of D-fusion and Li-fusion

Start: when proto star reaches radiative equilibrium ( <T>~ 10° K)
Characteristic: R ~ 2.5 Rgyn, Tefr~3000 K, L~0.5 |qun

End : when H-fusion starts = on main sequence
Characteristic: R ~ 1 Rgn, Ter~6000 K, L~1 Lgn

. The free-fall time of the cloud depends on the initial density as s ~ n™?
. The timescales and characteristics of the proto-star and pre-main
sequence star are given for a 1 Mg, object.
They are shorter for more massive objects.

B:

1. The process starts when the mass of a cloud exceeds the Jeans mass
2

3
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12.10 The stellar IMF

The initial mass function of the stars has been derived from observations of star

clusters of different ages or field stars. If field stars are used the number of

stars in any magnitude limited sample must first be corrected for three effects:

- the distance to which stars are observed, which depends on their absolute
magnitude

- the conversion of absolute magnitude to stellar mass

- the evolutionary effect for late stages of evolution, to convert the present
mass into the initial mass

- the lifetime effect, to correct the number of stars in a certain evolutionary
phase for the duration of that phase.

In this way the observed distribution of the stars as function apparent magnitude,
spectral type and evolutionary phase is converted into an initial mass function.
The best known modern IMFs are those of Kroupa (2001) and Chabrier (2003).

Kroupa-IMF N(m)dm = C;m™ 23 form > 0.5Mg
N(m)dm = C, m~13 for 0.08 <m < 0.5Mg
N(m)dm = €3 m™%3form < 0.08M

Chabrier-IMF - N(m)dm = D; —exp[—{log (m/0.08}?/0.952] form < 1Mq,
N(m)dm = D,m™ 2?3 form > 1Mg

with the constants C and D adjusted to match the different mass ranges.
These two mass functions are very similar at m = 0.5M, but deviate at smaller
masses, where the Chabrier-IMF predict more/less stars than the Kroupa-IMF.

H12.4 Homework
a. Plot the two versions of the IMF (Kroupa and Chabrier) in terms of
log(N) dm versus log m, in the range of 0.01 to 100 My, both normalized at
M= 1MO .
b.  Which fraction of the mass is in the range of 0.01 - 0.1 M, 0.1 -1 M,
1-10 Mg, and 10 — 100 M, in the two IMFs?
c.  Which fraction of the number of stars is in these ranges?
d.  Which fraction of the luminosity is in these regions?
(assume for simplicity that L ~M?
e.  Which fraction of the visual (V-band) luminosity is in these regions?
(adopt one characteristic value of T on the MS for each region, App B1)
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13.

13.1

13.2

The Zero Age Main Sequence (ZAMS)

Homology relations for Main Sequence Stars

The properties of stars on the ZAMS can be understood on the basis of
homology considerations, because they all have the same chemical composition
throughout the star. Homologous stars are those that have the same density
structure. So two stars are homologous if

@, =50,

The values of p. and R can be different for both stars but the structure of p/p. as
function r/R is the same. Because of hydrostatic equilibrium the same
homology applies for T/T. and P/P

G =EEL= G =EG,

The stars differ only by their scaling factors pc, T¢, Pc, M, R, L. With homology
relations we can predict trends in stellar properties. 1f we know R, L« and T
for a star of mass M (for instance from a stellar model or from an observed
double-lined spectroscopic binary), we can predict R+, L~ and T of other stars
with a similar structure but different M.

The Mass-Luminosity relation for ZAMS stars

We already derived the homology relations for P and T,
P.~M?/R* and T.~uM/R

(Remember how this was derived!) So the temperature structure of one ZAMS
star will be about the same as that of another star as a function of r/R, except
that it will differ by a factor (UM/R)./( UM/R), as long as convection is not
important.

Using similar homology arguments we already derived the first approximation
for the mass-luminosity relation of stars in radiative equilibrium.

H4M3
K

L~

We now consider this relation more closely for ZAMS stars.
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For massive stars, M>10 Mg , electron scattering is the dominant opacity. So

L~u*M3(1+X)

This is independent of the metallicity, Z, but strongly dependent on He.
Ignoring the small fraction of Z, we find (1+X)*=(2-Y)* and p*=(2- 5Y/4)™ .
Massive stars convert a larger fraction of their H mass into He than low mass
stars, because of their convective cores.

This is important for understanding the brightening of stars during the
H-fusion phase, when the He content gradually increases.

For ZAMS stars of 1 <M < 10 My, the main opacity source is free-free and
bound-free absorption, which is described by Kramer’s law: k ~ ZpT~7/2

Using p ~ M/R3 and T ~ uM /R this gives
L ~ M4M3/Z(%).M—7/2M—7/2R+7/2 . S0

L ~ ,Ll7'5M5'5/ZR0'5

We see that for stars with the same p and Z, the M-L relation predicts
L ~ M>5/R%5. We will see below that R ~ M* with x ~ 0.6 so we predict

L ~ ,Ll7'5M5'2/Z

i.  This explains why the M-L relation of ZAMS stars is steeper in the region
between 1 and 10 My than for more massive stars.

ii. It shows that stars with small metallicity, Z << 0.01, will be brighter than
solar metallicity stars. This is a direct result of L ~ 1/x and x ~ Z

iii. It explains the brightening during the H-fusion phase when Y increases.

Fig 13.1 The predicted Mass Luminosity relation for ZAMS stars, based on
detailed model calculations. The slope is steepest in the region 1 to 10 My, and
flattens to lower masses where convection plays a role (CS Fig 5.11)
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13.3

13.4

The Mass-Radius relation for ZAMS stars

We can derive the M-R relation from the M-L relation if we can eliminate L.
Since all ZAMS stars have H-fusion we can derive a homology relation based
on the nuclear energy production.

The energy production per gram.second is € ~ pT? with v = 4 for the P-P
chain and v =~ 18 for the CNO-cycle. The nuclear luminosity is given by

L= fOR epAnr?dr ~ epR3 ~ eM

with

€~ pT? ~ (M/R®) u’MY/RY ~ u?M+v /R3+

Comparing the above expression for L with L ~ u*M3 /x we get

#vM2+v y4M3
R3tV ~ K

This yields an expression for R

v—4 V-2 1
R ~ Us+v - M3+v « K3+v

For massive ZAMS stars, M>10 Mo, where kx ~ 1/(1 + X) and the H-fusion
goes by the CNO-cycle, so v = 18, and k=c, , S0 we find

R~M%8t | u23 (1+X)%%  for M= 10Mg

For1 <M <10 Mo ZAMS stars where H-fusion also goes by the CNO-cycle,
S0 v = 18, but « is the Kramers opacity, we find

R ~ M08 ;=054 7013 for 1 <M < 10Mg

We see that for M>10 My ZAMS stars the radius scales with M°81  whereas
for lower mass, 1 — 10 M ZAMS stars the radius is almost independent of
mass.

The Mass-T relation for ZAMS stars

The most interesting homology relation for ZAMS stars is the relation between
M and T because that is plotted in HR-diagrams and CMDs. We can find the
homology relation for Ters by combining the predicted M-L and R-M relations
using Te ~ [L/R*]"/*
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For massive ZAMS stars, M>10Mg, where « = ., we find

Teff ~MO0-31 u2/3. (1 + X)1/4-

For lower mass ZAMS stars, 1 < M < 10 Mg, we find

Tff ~M1'26 uZ.l Z—0.31
e . .

We see that Tt decreases with decreasing mass, (that is why the ZAMS
goes to the right and downwards for decreasing mass), and that the decrease
is a stronger function of M for stars of 1-10 Mg than for 10-100 Mg .

. These relations cannot be applied for stars with M < 1 Mg because of the

influence of convection.

We see that for massive ZAMS stars T is rather insensitive to metallicity
(2), but for intermediate mass ZAMS stars a lower Z implies a higher T
and a larger L.

This shows that T increases for ZAMS stars of higher He abundance.
This is important for understanding the globular clusters whose CMD
shows multiple main sequences.

So the ZAMS of low metallicity stars and the ZAMS of stars with higher
initial (!) He abundance are to the left and slightly upward compared to
the ZAMS for solar metallicity stars.

lti L

Remark

Fig 13.2 Schematic
drawing of the effect of
higher initial He or
metal abundance on the
location of the ZAMS
. ZAMS in the HRD.
solar ab-’\l‘
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Note:

It is not important that you know the formulae of the homology relations of Tt
and R. But it is important that you understand the way in which these were
derived, and the consequences for the location of the ZAMS in the HRD as a
function of deviations from solar abundances, because this is important for
understanding globular clusters.

Summary of the homology relations for chemically homogeneous stars
(ZAMS), derived from detailed stellar evolution models

Process R T Pe Pe~pc Te/p
pp-chain Vv = 4 M+O.43 |J~+l M+O.57 M-0.3 M+0.27
CNO'CyCIe v = 18 H+2/3 M+0.81 u+1/3 M+0.21 u-z M-l.4 u-8/3 M-1.2
Homework

Calculate the displacement (in terms of A/ogT.and AlogR) of stars 1, 3, 9, 20
and 40 My on the ZAMS if
i. the Helium abundance changes fromY =0.28to Y = 0.38

ii. the metal abundance changes from Z = 0.02 to Z = 0.001 (which is the
mean metallicity of galactic globular clusters)

iii. Use the values of M, L, Te from the models for solar metallicity (from
Appendix C2) and plot the three ZAMS, based on stars of 1, 3, 9, 20, 20
Mo, for
(a) solar abundance : X,Y,Z = 0.68, 0.30, 0.02
(b) increased Helium abundance: X,Y,Z = 0.58, 0.40, 0.02
(c) decreased metal abundance : X,Y,Z =0.70, 0.30, 0.001
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14.  Evolution During the Main Sequence Phase

14.1 Nuclear Fusion as a Thermostat

During the MS phase H is converted into He in the core. The temperature in the
core can only change very little, because fusion is a strong function of T with

€ ~ T* for P-P chain and ~ T for the CNO-cycle. Even a small change in T
would result in a large change in € and in L, which is not allowed by the HE-
requirement. So nuclear fusion acts like a thermostat in the center of the star.

14.2  Changesin L and R

If T, remains constant during the MS-phase but . increases, then Pc/pe ~ To/He
must decrease. So either P, decreases or p. increases as more H is converted
into He. It turns out that both effects occur. (Verify this with models; e.g.
Schaller et al 1992 AA Supl 96, 269.)

In H.E. the central pressure is set by the weight of the layers above.

So, as the central pressure decreases during the MS phase the outer layers of the
star have to expand.

So when p increases in the center the radius has to increases.

At the same time the luminosity increases (p-effect).

(NB: The luminosity does not increase as steeply as L~p*, because that was
derived for homogeneous chemical composition, which is not the case when
the star is fusing H in the core. In fact L increases less steeply.)

Because R? increases more than L, the effective temperature Ters ~ (L/R*)M*
decreases. This implies that the stars move up and to the right in the HRD
during H-fusion in the core.

N TR AN
\:(’
) VL - Fig 14.1
T e e
N§ - Evolution tracks during H-fusion.
1.1 - The locations of the Zero Age Main
3 NG - - Sequence (ZAMS) and the Terminal
g "‘{11 Age of the Main Sequence (TAMS)
| 9%y " are indicated. Symbols indicate
i B ekt A | binary observations.
114, $-30 ol J { (based on OP Fig 8.9)
¥
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14.3  Changes in the chemical profile

Stars with M > 1.2 Mg fuse H via the CNO-cycle, which is very sensitive to T.
Therefore the nuclear energy is generated in a very small volume. This means
that the energy flux is very high in and around the core of these stars. If that
energy was transported by radiation, it would require a steep temperature
gradient. So the central regions of these stars become convective.

Core convection has two effects.
i.  Convection brings fresh H into the center from all over the convective

region so more H can be fused. This extends the MS lifetime of these
stars.

ii.  The chemical profile of MS-stars with M > 1.2 My, is flat in the center,
whereas it is peaked for lower mass stars. As the H-fraction in the core
decreases, the convection zone shrinks in mass.

Q? Why?

Hint: remember what the effect of a p-gradient is on the convection criterium.

This implies that the chemical profile is flat in a decreasing fraction of the
mass. Both effects result in a chemical profile that evolves like sketched below.

Mg1Mp 3t ,. MgaHe MY 2Hp
- - A
TAMS 07 2AMS \‘,.”“ )/ '..‘”m‘ >/
=
.,‘uns > zars |09
) J

Fig 14.2 Changes in the chemical profile during the MS-phase of stars with
and without convective cores. The dashed line is the distribution at the end of
the MS phase TAMS.

H14.1. Homework
Verify that the MS lifetimes of stars M > 1.2 My increase in the way we expect
for stars with convective cores. Do this for stars with Z = 0.02 (solar) and
M =120, 25, 5, 1 and 0.8 M.
Use the tables in Appendic C2 where g..= mass fraction contained in the
convective core att = 0. (Data from Schaller et al. 1992, AA Supl 96, 269)
Compare your result with the data in the lower part of the table, and comment
and explain the differences.
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144  The MS evolution of the Sun

The two figures below show the distibutions of abundances as well as the
distributions of r(m), T(m), P(m), p(m) and L(m) for the solar model now
(t=4.5 Gyr: Fig 14.3) and at the TAMS (t=12.3 Gyr: Fig 14.4).

(Figs from CO)

Study these figures and try to understand the basic features:

in particular the changes in L(r) and abundances (r).  (Xi2 = 2C, X4 =*N)

0.0 0.2 0.4 0.6 08 1.0

or T 1= T

A\ A

08k \\ VL T /~x,a\ I'M ]

07k ’

06 \' \// [ / \ 1

s 1 / Il

05 \\ .ﬁ‘ﬁa_\ 3 / \ u
\ ’

04~\\l/ \’, \ -

03 -‘B(‘ |\ R Tl

02t \p F\/ \ |

gk ] S-S AR SR

0.0 -l _4"-:‘“"———4._ L | 1\'
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Mass fraction

Fig 14.3 and 14.4
The internal structure of a 1 My, star at t=4.5 Gyr (= Sun now) (fig 14.3)

and t=12.3 Gyr (at the end of the H-fusion phase = TAMS) (fig 14.4).
(Figs. from CO)
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14.5 Convective Overshooting in the MS phase

We have argued before that where-ever there is convection, there may be
convective overshooting. This produces chemical mixing over a larger region
than predicted by the Schwarzschild or Ledoux criterium.

Overshooting has two effects (similar to normal convection)
I. It extends the MS lifetime
ii. Itincreases L because <p> increases in a larger region.

The observed colour-magnitude diagrams of star clusters provide evidence for
overshooting.

P——r

T - - | 1 r— -
oL NGCT52 meM e AN E(B-V) = 00N | . { Ic4851 meM o= 1000  [(N-V) = 0080 ]
v

“~ S logt = 014, F =« 00100, M =~ 17}
= OV gl =020 2 = 00100, N, = 1)) :ﬂ
/ o

’l'ﬂlqloiﬂl-ﬂnlllh -

OVE g t = 0,22, lo{)l)lllv -8 /

- /(
,{,. ¢
1

Fig. 14.5 Comparison between the observed CMD of two open clusters
NGC752 (left) and IC4651 (vight) , both = 1.5 Gyr old, with predicted
isochrones with overshooting (OVS = full lines) and without (STD = dashed

lines. (OP Fig 8.11)

The isochrones calculated with overshooting (full lines) fit the observations
better than those without overshooting (dashed lines). From studies like this it is
concluded that in the mass range of 1.5 to 8 Mg the overshooting parameter is
a,s = 0.25 so the overshooting length is [, = 0.257,.
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14.6

The end of the MS phase: core contraction

When H-fusion stops in the core, the core has to contract to compensate the
radiative losses.

In stars of M > 1.2 Mg, the whole core contracts “suddenly” because H is
exhausted in the whole core, due to convection. (see the Fig 14.2).

In stars of M < 1.2 Mg, the contraction is more gradual, because the chemical
profile allows H-fusion to keep going gradually.

As a result of this difference, stars with M > 1.2 Mg contract as a whole.

This reduces the stellar radius, which produces a small leftward loop in the
HRD at the end of the H-fusion phase. This contraction ends when the region
around the He-core has reached a sufficiently high T and density to start H-
fusion in a shell around the He-core.

Stars with M < 1.2 Mg do not contract as a whole because the H-fusion is
extinguished more gradually. Meanwhile the core contracts (just like in stars
with M>1.2 Mg ) but this slower contraction does not result in a decrease of
the outer radius. So these stars do not make a leftward ward loop in the HRD.

Check this with the tracks in Appendix E.
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15.

15.1

15.2

Principles of Post-Main Sequence Evolution

Definition of zones and regions

For discussing the evolution of stars it is useful to distinguish several regions in
the star.

a. The core: is where fusion is going on or has gone on.

b. The shell zone: is where fusion occurs in a shell or in shells around the
core.

c. The envelope: is the region between the shell zone and the atmosphere.

d. The atmosphere: is the region where the optical depth for most of the
radiation is less than < 10. Radiation can escape from this layer.

e. The chromospheres and corona: is the region above the atmosphere
where the temperature rises far above the effective temperature. This is
typically for stars with convective envelopes which generate shocks in the
upper atmosphere, so only cool stars have chromospheres and coronae.

f.  The wind: is the region from which gas escapes with a typical speed of a
few times the escape speed. We will discuss wind processes later.

Cool stars (like the Sun) have winds driven by gas pressure due to the high
temperature of the coronal gas.

Very cool stars (like AGB-stars) have winds driven by radiation pressure on
dust-grains.

Hot stars (O, B, and Wolf-Rayet stars) have winds driven by radiation
pressure on ions.

The evolution of the core

We have shown before (10.11) that during the evolution of a star in radiative
and hydrostatic equilibrium , supported by gas pressure, the central
temperature and density are related via

UG . .2/3 1/3
T, =2 M p

where M. is the mass of the core that contracts. This is the mass that was
enriched by the previous evolution phase.

(Remember the way this expression was derived!)

So the evolution of T and p. in the center of a star, due to nuclear burning and
contraction, proceeds roughly along a line of

log T, = const + logu, + 2/3logM. + 1/3log p,
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Q?
Q?

In the most massive stars, M > 50 Mg, radiation pressure dominates the gas
pressure in supporting the star. In that case

2
T ~P ~ % ~ M3 p*3  independent of pe, SO

logT, = const+ 1/6logM,. + 1/3logp.

We can compare these tracks in the T, ,p. diagram with the location of the
fusion zones, and with the regions of the different equations of state, as a
function of the initial stellar mass. (The regions for the different EOS wer
shown in Fig 10.7)

This is shown in the figure below.

LN I UL IR NNL L DL L DR R L BRLEN R B P D Fig15.1
I " 4 Schematic evolution of stars in
the (pc, Tc)- diagram with the
regions of nuclear fusion in
the center indicated.

(Same as fig 10.7,
OP Fig 7.3)

log pe

Check that the temperatures of the fusion phases agree with those in Table in
10.8. If not, what could be the reason?
Why does the line for H-fusion show a kink?

Caution: the figure describes the evolution of the star in the (pc, T¢)-diagram

as a function of the total mass. We have seen above that this is not the correct
parameter to describe the central evolution, because the relation depends on the
mass of the core that contracts and not on the initial total stellar mass.

From the figure we can learn several interesting facts about the evolution of
stars of different masses.
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A. Stars with M < 0.1 Mg do not reach H-fusion.
Detailed calculations show that the real limit is 0.08 M.

Q? Can you think of a reason why the simple estimate, based on scaling the
solar model to estimate T and p, fails?
(Stars which never reach H-fusion are “brown dwarfs”).

B. Stars with 0.08 < M < 0.8M, reach H-fusion but not He-fusion.
They end up as He-rich degenerate white dwarfs.

C. Starswith 0.8 < M < 2M, reach He-fusion and then become C-rich WDs.

D. The figure suggests that stars with 2 s M < 6M, would go through C-
fusion and then enter the region of Extreme Relativistic WDs. Since ER
stars only exist if they have exactly the Chandrasekhar mass, they will
collapse.

However, we will see below that most (or maybe all) stars in this mass
range suffer very high mass loss near the end of their life (i.e. in the AGB-
phase). This results in a strong reduction of the stellar mass, which
prevents the stars from reaching the ER-state.

E. Stars with M = 6M, do not become degenerate and go through all fusion
phases.

The picture above gives a reasonably good description and explanation of the
internal evolution of stars. However, detailed evolutionary calculations show
that a few modifications have to be made.

The most important one is the use of the total initial stellar mass to describe
the location of the tracks in the (T, p.) diagram:

- When a star contracts on a Kelvin-Helmholtz timescale at the end of a
fusion phase, not the whole star contracts, but only the central region which
took part in the previous fusion phase.

(For instance, at the end of H-fusion the newly formed He-core contracts.)
This means that the constant (uM?/3) of the T, p, relation is smaller.
Therefore the criterium whether or not a star reaches a certain fusion phase
is better described by its “core-mass” than by its initial mass.

- Stars may lose a substantial fraction of their mass due to stellar winds.
For high mass stars of M > 30 Mg the mass loss is significant during their
whole life. For low mass stars it is only important in the later phases, after
the H-fusion phase. (We will discuss stellar winds and how it affects the
evolution later).

Taking into account these two effects, it turns out that
- the minimum required core mass for He-fusion is 0.3 Me.
- the minimum required core mass for C-fusion is 1.1 Me.
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15.3

Isothermal Cores

At the end of the H-fusion phase the fusion in the core has stopped so the core
does not produce energy, which implies L(r) = 0 for r < R, (R is the radius
of the core and M. is the mass in that core). If L(r < R,) = 0 then dT /dr = 0
in the core. So the core has become isothermal.

An isothermal core in hydrostatic equilibrium must have a steep density
gradient because for constant temperature dP /dr ~ Tdp/dr. In other words:
the density gradient has to provide the pressure gradient without the help of the
temperature gradient. It turns out that an isothermal core can only exist if its
mass is smaller than a certain fraction of the total mass of the star.

We will derive this in a way that shows resemblance to the derivation of the
Virial Theorem.

Hydrostatic Equilibrium

Multiplication by 4773 and integration over the core, i.e. 0 < r < R, gives

GMZ

Jy 4nridpP =~ [T p.4nr?dr = Efy = ~a

with a > 1.

c

Partial integration of the left hand term (as in Virial Theorem derivation) gives
5 4mr3dp = 4nr3P |Re — 3 [ Pamr2dr
0 - 0 0

3RT,
.M,
Ue

= 47R3 P(R, ) — 3”% [} p.amr?dr = 47R3 P(R,) —

where we have used the isothermal condition P = RpT,/u. with T, = constant.
Notice that the first right-hand term is not zero as in the derivation of the Virial
Theorem, because here we do not integrate up to R+, where P(Rx) =0, but up to
R¢. Here P(R,) is the pressure at the outer boundary of the isothemal core.

2
So 4nR3P(R,) — ey, = —q 2
He R¢
This gives a relation between the pressure at the boundary of the core and its
radius, for a given core mass M. and a given temperature T..

R 2
P(R,) = 2RTeMe _ @ oué

41 pc RE  4m R

This expression is of the type y = Ax® — Bx* if x =1/R..Ithasa
maximum at x = 34/4B where y,,., = 334*/4*B3.
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Q?

Substituting A and B gives the maximum pressure that an isothermal core can
support.

T¢

ugM¢

P"X(R,) = C

So the “weight” of the envelope on top of the core should be less than this
maximum value, otherwise the core cannot be stable. But the higher the core
mass, the smaller this pressure!

Explain in physical terms why there is a maximum for P(Rc).

Let us assume that the isothermal core contains only a small fraction of the total
stellar mass M, and that the radius of that star is much larger than R.. Then the
pressure at the bottom of the envelope (which is at R;) can be estimated in the
same way as the estimate of the central pressure of any star in H.E.:

Pe™(R,) = GM?/R*.

The temperature at the bottom of the envelope is the same as the core
temperature T, with

GM M RT, .
T~ .22 or = ~ =% where g, is p in the envelope.
R R R Henv

Substitution of this into the expression P™(R,) gives

T

ﬂgnsz

PenV(Rc) ~

The isothermal core can only be stable if P*™(R.) < PS.x(R.).
This gives

2
Me< ¢ (“—) with C = 0.37
M He

This is called the Schénberg-Chandrasekhar limit for isothermal cores.

So at the end of H-fusion in the core, the remaining isothermal Helium core,
with u. = 4/3, can only be stable if its core has an estimated mass of

0.60
1.33

Me < 0.37( )2 ~ 0.08

Here we assumed that the envelope is not chemically enriched at all. In reality
the lower part of the envelope has also increased He-abundance, S0 e, > 0.6 .
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Q?
Q?

If that is taken into account then the
Schonberg-Chandrasekhar limit for isothermal cores is M/M < 0.10

If the core is less massive than this, then the subsequent H-shell fusion occurs
around a stable Helium core. If the core is more massive than this, the
isothermal Helium core cannot carry the weight of the shell plus envelope, so it
will contract during the H-fusion in a shell around it.

Contraction of the He-core will create a temperature gradient that produces
extra gas pressure and helps to stabilize the core. So the core is no longer
isothermal. The temperature gradient also results in an energy flux from the
core. So once the core starts to contract it has to keep doing so until He-fusion
starts in the core. This contraction occurs on the Kelvin-Helmholtz timescale of
the core.

GM?
RC

Ty = — /(L — Lgpen )

Why L - Lgney instead of L ?
Estimate the timescale for a post-MS star of 3 M, that has a core of 0.45 Mg
and gets 10% of its luminosity from core-contraction. Compare it with the MS-

life of this star.

Which one of the stars is more likely to have a contracting core during H-shell
burning: a star of 10 Mg or a star of 2 Me? Why?

Homework

Use the model data in the appendix of Schaller et al (1992, AA Supl 96, 269) to
determine the initial masses of stars of solar composition that create a stable
isothermal He-core at the end of the MS phase, and of those that have a He-
core that is larger than the Schénberg-Chandrasekhar limit and has to
contract.

Hint: The moment of core contraction can be seen in the HRD by the short
leftward motion at the end of the MS phase. In Schaller’s models this is
characterized by the increase in Tei just before X=0 in the center. The mass of
the convective core, g, at that moment gives the mass of the He core at the end
of the MS-phase.

Homework
Explain in physical! terms (words) why there is a limit to the pressure of the
envelope that an isothermal core can support.
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15.4  The mirror principle of stars with shell burning

Whenever a star has a shell burning source, it appears to act like a mirror:

core contraction — envelope expansion

core expansion — envelope contraction

N\ P4 A} 4

3]

7 N 4

Fig 15.4 The mirror action of shell fusion: if the core contracts the envelope
expands and vice-versa.

There are two ways to explain this: by using the virial argument or using the
pressure argument. In both arguments the thermostatic behavior of a fusion
shell plays a key role (see section 14.1).

The Virial argument

The fusion efficiency is very sensitive to T. Therefore, as the core contracts the
fusion shell can hardly contract with it, because otherwise it would increase its
T and its energy production.

So the shell has to remain at about the same distance and the same T. So the
“mean T” of the star will not change very much. If the mean T does not change,
then the total kinetic (thermal) energy will not change. The virial theorem then
implies that the total potential energy should also remain about constant.

So if the core contracts (more negative Eyq) then the envelope must expand
(less negative Epqt), and vice versa.

The pressure argument

For the star to remain in thermal equilibrium, the energy generation by fusion
must remain constant. So if the core contracts and the shell follows it, the
temperature in the fusion shell will rise. This would imply a higher energy
generation rate unless the density in the shell decreases (remember: € ~ pT*).
But as the density decreases, at about the constant temperature of the fusion-
reaction, the pressure in the shell decreases. This implies that the pressure of the
envelope on top of the shell must decrease. So the envelope must expand.
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Q?

N.B.

The argument for the mirror principle does not apply to stars with degenerate
cores. In these stars the shell is right on top of the degenerate core. So if the
degenerate core shrinks the shell has to contract with it and reaches a higher P
and T. This results in an increasing luminosity.

Why would the degenerate core contract?

We conclude that:

1. Fusion shells act like mirrors in the expansion or contraction of the
core and the envelope. This is due to the thermostatic action of fusion
shells.

2. The contraction of a non-degenerate core surrounded by a fusion shell
will result in an expansion of the star.

3. The contraction of a degenerate core surrounded by a fusion shell will
result in an increase in luminosity.

105



Astronomy 531 University of Washington Spring 2014

15.5

155.1

155.2

The Hayashi-Line of Fully Convective Stars

Fully convective stars occupy a narrow, almost vertical line at low temperature,

in the HRD diagram if it is plotted as L versus Ter. We have seen that this

applies to fully convective pre-MS stars. But it also applies to fully convective

Red Giants and AGB stars. They are all on about the same line in the HRD, the

Hayashi line after the Japanese astronomer who explained this observed effect

in the early sixties. It is the result of two effects in stellar structure theory:

- convective stars have extended envelopes and so their T is low.

- at low temperatures of T < 3000 K the opacity in the photosphere drops
steeply towards lower Teg.

We will derive the physical principle of the Hayashi-line by showing what
happens if a (nearly isothermal) photosphere is attached on top of the envelope
of a fully convective star. The star is supposed to be convective up to the layer
where T =~ 1, i.e. the photosphere. We will call this radius Ry (which of course
is very similar to the stellar radius R).

int

The pressure at Ry, derived from the interior, P(R;)

A fully convective star obeys the polytropic relation: P = K p>/3

Since all convective stars are homologous (same P/P,, T/T. and p/p,. if these
are expressed in function of r/R+) we can derive how K depends on the mass or
radius of the star by realizing that the central pressure is proportional to

GM?

P~ 3 and P.=Kp>? with  p.~M/R?
H.E. polytrope homology

So the scaling constant K of the polytropic index depends on the stellar
parameters as

_ P M? , 5 M2, RS 1/3
K— 5/3~F/p3~F M5/3 d K~M R

c

The polytrope expression for P is valid at all depth, also at the top of the
convection zone at Ry, so

Plint — Kp15/3 ~ M1/3R pf/3

The pressure at Ry, derived from the atmosphere, P(R,)"

Remember that the temperature structure of a simple (grey) photosphere is
given by
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15.5.3

3 2
T* = ZTeAlff(T + g)

This implies that the photosphere is almost isothermal because:

0.84<T /T <1.06 if 0 <1< 1. Therefore we adopt for simplicity that the
photosphere is isothermal with T=T;.

The pressure then decreases exponentially with height as

a _Rhdp _ _GM ., dnp _ GM p kg _ 1
dr ~ w dr rz P dr = R2RTy, R, H

- - - - - - - —"«_R1
So the density distribution in the isothermal photosphereis p = p;e” #

The density scale height is H = % ~ TiR? /| GM

Using this expression for p, we can now find the pressure Py at =1,
which we want to compare with the pressure P, that was derived from the
polytropic interior.

The optical depth t =1 is defined by

_(r-R1)

fRO:KpdT=1 - EfRO:ple w odr = kpyH =1

where we used a mean constant value for ¥ = k(r = 1).

So the density pyatt=1is p; = 1/Hk ~ GM/TR?*k
and the pressure at R; = R (1=1) due to the photosphere is

phot _ GM 1
A=~ pTh~ 5=

R2 Kk

Match the pressure of Interior to Photosphere at t = 1

We now have two expression for the pressure Py, one derived for the top
of the polytropic interior, and one derived for the bottom of the photosphere.
These two should be equal. The value of P/™ depends on the density
at the top of the interior, for which we derived an expression from the
photosphere p; ~ GM/TR?* (with M, T, Rand k att=1).
Substitutions yields

PlphOt — Plint N MR—ZK.—l ~ MZR—7/3T—5/3K—5/3 - R~ MST—SK.—Z

Up to now we have not specified the energy source, nor the luminosity.

(NB: The luminosity does not have to obey the M-L relation that we derived
earlier, because that was derived under the assumption that energy transport is
by radiation, and in these stars it is by convection!)

107



Astronomy 531 University of Washington Spring 2014

155.4

The luminosity issetby Ryand T;: L~R*T*
This gives the luminosity of fully convective stars:

L~ M8 T-6 k4|

The absorption coefficient k in the photosphere of cool stars

For very cool stars (Ters < 6000) H™ is the dominant atmospheric opacity. with

Kk = kopT?(Z/0.02) with k, = 2.510736cm? /g if p and T are in cgs units.
We can write thisas ~ k = kp®T? witha=1landb =9

This opacity is very small: at T = 3000 and p = 10™° g/cm®, which are the
approximate values in an atmosphere of an AGB star, the opacity is only 5.10°
cm?/g. (Compare this with k ~ 0.3 cm?g in the interior of ionized stars).

Substituting this into the expression for L, we find (after long but not difficult
algebra)

log L = Alog Tess + B log M + constant

with
18a+4b+6
A=——=60
3a—-1
2a+6
B = ~ 4
3a-1

We see that for fully convective stars

L ~ Te6f? M4 or Teff~ 10-017  pq0.07

This means that T is “almost” independent of L and M, so Hayashi line is
almost vertical in the HRD when the luminosity is plotted versus log T,
and lines of constant M are very close together.

N.B.
i. Detailed evolutionary models show that the Hayashi line bends a little bit to
the right (towards cooler temperatures) at L > 10% Lo (see Figure 12.2)

ii. In the colour-magnitude diagram the Hayashi line of fully convective stars

bends so much stronger to the right, e.g. in B-V colour, because this colour
depends very strongly on Tes. For cool stars (see Figure 1.4).
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155.5

Intuitive Explanation for Hayashi Line

We have derived the location of the Hayashi line from mathematical
expressions. Can we also understand the location of the Hayashi line based on
simple physical insight?

Consider the two main ingredients:

I.  Fully convective stars are geometrically extended and so: their effective
temperature will be small.

ii. The opacity, or absorption coefficient, at low temperatures is due to H". This
opacity is very small (e.g. k~10"*at T ~ 3000K,p ~ 1071%) and
decreases very steeply with decreasing temperature T°.

Suppose a very cool star of constant of constant L would increase its size, then
the photospheric T would decrease and the outer layers would become (almost)
transparent. So even if the star’s size would increase, we could look deeper and
deeper into the star up to the depth where T = 1 is reached at almost constant
Tety.

This is the main reason why the Hayashi line is approximately vertical in HRD.

The argument does not apply to stars which contain dust in their envelope. For
such stars (e.g. stars at the tip of the AGB with dense cold winds and class 0
TTauri stars, see Fig 12.4) the main opacity is dust opacity, which is large and
has a weak dependence on T. So these stars radiate as black bodies with the
temperature of the dust and the radius of the dusty wind.
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16.

16.1

Stellar Winds and Mass L0ss

The history of stellar winds, their observations and theories and their effects on
the stellar evolution have been described in “Introduction to Stellar Winds”
(Lamers and Cassinelli 1999, Cambridge University Press, ISBN0-521-59565-
7). I will refer to this book as “ISW.”

Mass loss by stellar winds play a key role in the late evolution phases of low
mass stars and throughout the whole evolution of massive stars. There are
basically four types of stellar winds:

a. Coronal winds are driven by gas pressure due to the high temperatures
of stellar coronae. This mechanism is responsible for the winds of cool
stars on the main sequence like the Sun and possibly also red giants.
(ISW 3 and 5)

b. Dust driven winds are driven by radiation pressure on dust grains. This
mechanism also needs stellar pulsations to be efficient. It produces the
winds of pulsating red giants and AGB stars. (ISW 7)

c. Line driven winds of hot stars are driven by radiation pressure on
highly ionized abundant atoms. This mechanism is responsible for the
winds of hot luminous stars: O and B-type main sequence stars, hot
giants and hot supergiants, Wolf-Rayet stars and central stars of
planetary nebulae. (ISW8)

d. Alfven wave driven winds are driven by magnetic waves. The
magnetic fieldlines are rooted in the photosphere. Horizontal motions of
the footpoints (due to convective cells) produce waves of the fieldlines
(like a hanging string that is shaken at the top). These wave
produce an outward pressure gradient that can accelerate ionized gas.
This mechanism is (probably) responsible for the mass loss from red
giants. (ISW 10)

Mass loss rates are expressed in units of 1Me/yr = 6.3x10% g/s. A typical mass
loss rate of 10° Me/yr corresponds to the loss of about an earth-mass per year.

Coronal Winds and the critical point

We describe the coronal wind theory for a star that is surrounded by an
isothermal corona of temperature T.. We assume that the wind is stationary
and spherical and we ignore magnetic effects.

For a stationary wind the mass loss rate is given by the equation of mass
conservation

M = 4nrip(r)v(r) with M = —dM/dt > 0
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For a stationary wind the time derivatives are zero, so

dv(r,t) _ sv(rt) , év(rt) dr
R sr dt

dv dv
=0+—v=v-—
dr dar

Newton’s law f = m.a = m.vdv/dr with the forces due to the gas pressure
gradient and gravity can be written as an equation of motion

v dv GM, dpP or v dv +
p ar r2 p dr dr

GM, , 1dP _
r2 pdr

0

RpT . . .
where P = % is the gas pressure. For an isothermal corona the last term is

1dP _ RT 1dp _ a%dp

p dr u pdr p dar
with the isothermal sound speed a = (RT/u)*/?

Using the equation of mass conservation, p ~ v~1r~2, we can express
1dp _ _1dv 2
p dr - vdr r

Substitute this into the equation of motion and find

dr T2 vdr r

1dv _ (2a® GM, 2 2
or vdr_(r TZ)/(v a’)

This is a critical equation which has a numerator and a denominator that both
can go through 0. The numerator is negative close to the star, where

GM./r? > 2a?/r and increases outwards as GM/r® decreases faster than a*/r.
The denominator is also negative close to the star where the wind speed is still
very small at the photosphere and increases outwards as the wind accelerates.
This means that close to the star the velocity gradient is positive: v(r) increases.

What happens if the denominator reaches 0 when the numerator is still
negative?
What happens if the numerator reaches 0 when the denominator is still
negative?

The only solution with a velocity gradient that is positive at all distances
requires that both the numerator and the denominator flip signs at the same
distance. This so-called critical solution thus requires that

2a*> GM,
v =a where =—
TC TC
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SOLUTICMS OF THE MOMENTUM EQUATION
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Fig 16.1 The topology of the solutions of the (critical) momentum equation of
an isothermal wind. The critical point is ret = re=GM/2a’ , where a is the
isothermal sound speed a’= RT /. (ISW Fig 3.01)

This shows that the wind reaches the sound speed at the critical point
1. = GM./2a?|

So we know v and r; at critical point. If we can derive the density there, we
know the mass loss rate. It turns out that the density structure in the subsonic
region, v < a, is almost exactly the same as that of a hydrostatic atmosphere.
For a hydrostatic isothermal atmosphere

1dp = GM, r2dp GM,

== =0 o —L=-

p dr r2 p dr a?

The solution of this equation gives the density structure in the subsonic region

2
with scale height 71, = 2= = 2L 1o
ug u GM,

with rg is the bottom of the corona.

p(r) = pg exp {—U;[—Z") -

This gives an estimate of the density at the critical point r.. Substituting this in
the equation of mass conservation gives mass loss rate of coronal winds of

M = 4ntr2ap, exp {—(r%:*) . }:—C} withr, = GM, /2a?

where we have assumed that the bottom of the corona is at r, = R,.
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Quantitatively
2
/Mo e = 12100 () () (7)) exe -2 2 - 1))

with £ = 6.9(M./Mo)(R./Ro) ™ (Te/10%) ™!

Notice that the dominant factor in the expression of M is the exponential
function. If ., >> R, then the exponent is << 1 and the mass loss rate is very
small.

The table below (ISW Table 3.1) gives the predicted mass loss rates of coronal
winds for main sequence stars and giants of 1 and 10 M, for different coronal
temperatures if po = 107**g/cm? at the bottom of the corona.

.r.|l)l1' :l (‘."'nw,w feristirs .'v.‘ .»u(,lu v'y-.',." '.","l"\ ‘.‘:','.- 0 ll" ."-‘f', at .‘Y'\- i"'l"'
oundary of po = 10 % 4/en
1 / 7] Ho [ ! |
K ) km/x) k) [km/s H. | I} Ho Ve /v
I 1 617.5  1.10 7.2 Ta10°% 687 0310%° 1210 %
.10 645 22107 229 1010 L5 10
110} 117.7 T7.310°2 6.9 8010 1.6 10
510 200.9 22107° 2.3 2.9 8.2 10
5.10 263.2 610 ! [ B Lo 1o
| 110 .7 LIt fi. 2,210 4 229 1O 10F LG 102
110 18 7310 - 6.9 8110 1.6 10
1) 2001 2210 2.8 ) 8210
L f 5o 1.} .1 1.0
1 L 17 L1t 172 T310° 68.7 9.3 10° L2 ™
510 G456 22107 2249 1010 1.4 10
(L 177 73102 6.9 8010 1.6 10
5.0 2039 2210 2.3 3,9 210"
i ( 610 [ S 10
I [0 1.7 I . 2 1 229 1.0 10 | I
Lot 118 7310 39 K. 10 1.6 1
500 20).1 2.2 1) 2.3 Rt 210"
Lo 26.3 U L 1.1 11 1o lo
1 A /vr 6,308 10°7 g/5 1 (.60
Notice that:

1. Forastarof 1 Mgand 1 Rgand T, =1. 10°K the coronal mass loss rate is
10 "** Molyr, in good agreement with the observed rate of 2. 10™* Mg/yr.
This is so small that it does not play a role in the MS evolution of the sun
because M X t,,s < Mg.
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16.2

16.2.1

2. Ared giant of 1 Mg and 100 Re has a coronal mass loss rate of ~ 107 Molyr
if the coronal temperature is only 3*10°K and it increases strongly with
increasing Te.

3. Appreciable mass loss rates of M > 10 Me/yr are only obtained for coronal
winds which reach their critical point r¢ at less than about 10 scale heights
above the photosphere.

Why is M very strongly dependent on (r, — R,)/H,?

Dust Driven Winds of Pulsating Stars (1isw chapter 7)

Cool stars can have dust in their outer envelopes. Dust is an efficient absorber
of radiation so the absorption of stellar photons by dust grains produces transfer
momentum from the photons to the dust grains (= radiation pressure) which are
then accelerated outwards. The dust grains collide with the gas atoms and
molecules and drag these outward as well, producing a stellar wind.

Dust Opacity and Radiation Pressure (ISW 7.3)

Observations show that the average dust/gas ratio (by mass) is about 0.01.
Why is it so low?

Suppose that the dust grains are spherical with a mean radius a and a mean
density pqy. For icy particles p; =~ 1g/cm?3 and for silicates (sand)

pa =~ 4 g/gm3. For simplicity we adopt a mean value of p; ~ 2 g/cm3. So 1
gram of gas contains n; = 3.1072/4ma3p, dust grains, with a total cross
section nyma?. The total absorption coefficient of one gram of dusty gas

2 3x1072Q 2
Kg = ngma“Q = Taaps = 10 cm* per gram of gas
d

where Q ~ 1072 is the efficiency factor for absorption and scattering and the
mean particle radius is a = 0.05u.

The wind can be driven by dust if the radiation pressure force exceeds gravity

Lk GM. 4 mGMc L M
- > L> —210°—
amrc r? K Lo Mg

This is the case for stars with M> 10 My, i.e. for massive Red Giants, and for
Red Supergiants and AGB stars.
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16.2.2

Q?

16.2.3

The Temperature of Dust

The temperature of dust can easily be calculated by radiative equilibrium: the
amount of energy absorbed per second = the emitted radiation.

The energy absorbed by a grain per second is E;,, = ma?Q,ps 4;7 with

L = 4mR?0T%
where L is the stellar luminosity and r is the distance of the grain from the star.

The energy radiated per second (black body) is Eyy = 4m1a?Qp0 T
Where Qen is the emission efficiency with Qaps = Qem.

Equating these two gives the dust temperature at distance r from the star

Tq = Tefr (f—;)l/z

NB:

Tq is independent of the size of the dust grains. So this equation can also be
used to estimate the mean temperature of planets (with a small correction for
their reflection by clouds or ice).

Check this for the Earth.

Dust sublimates if it gets hotter than the condensation temperature, Tcong, Which
is about 1200 to 1500 K for different types of dust. This means that dust can
form only at

2
Lz l(tu)
R, 2 \T¢ond

For a cool stars of T, = 3000K dust can only form at r~=2 R,, i.e. about R,
above the surface.

The problem of the scale height and the role of pulsation

We have seen above that all cool stars with L/Lg,n > 10° M/Mgyn could in
principle drive a wind by radiation pressure on dust grains. However, we have
also seen that dust can only form at ~2R~. This creates a serious problem,
because if there is no wind the density at a distance of 2R~ is so low that dust
formation at 2R~ would be extremely inefficient: so if there is no wind, dust
cannot form and if dust cannot form there is no wind.

We can express this problem in terms of photospheric scale height. We have

seen in the discussion of the coronal wind that the density decrease in the
subsonic structure (where v < a and f.g< GM/r?) is given by
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-R.) R. : RT,
p(r) = poexp {—u - 7} with H, = —=f

Ho ug
Apply this to a Red Giant with M =~ 1Mgn, R = 40Rgy, L = 100Lgyn,
Terr = 3000K, g = 20 cm/s?, p =1, H, = 0.18Rgy, = 0.004R-, and a photospheric
density of p,~ 10™2 g/lcm®. We see that at a distance of r = 2R~ which is 250 H,
above the photosphere, the density is 10™>* smaller than the photospheric
density!! Even for an AGB star of 1My, and R = 300Rgy, dust can only form
at 2R-, i.e. 2.5 H, above the photosphere, where p~10°p, = 10™® g/lcm® and
dust would form very slowly.

The only way in which the density at 2R« could be increased drastically is by
increasing the density scale height #, in the region between R~ and 2R~. Here
is where pulsation comes in!

Many RGs and AGB stars are pulsating. Pulsation tosses the outer layers up,
giving rise to a slower density decrease than in a hydrostatic atmosphere. This

is depicted in Fig. 16.2

- T T T T T

4k i
Aok _
=11 4
12} -
T3
RFIR
15 -
16}
17
18}

Leg Denslly (g ,,:m-:‘l}

-8

=20
.0 kK E.0 9.0 120 15D

Radius {1073 em)
Fig 16.2 The density structure in the atmosphere, p(r), of a pulsating AGB star
of R« = 250Rq,, for different pulsation amplitudes of 1, 2, 4 and 6 km/s. The
structure is ragged because it shows p(r) at one particular time in the pulsation
cycle. The straight line is the density structure if the star would not pulsate.
Notice the much slower decrease in density due to pulsation, which is
equivalent to a large increase in the density scaleheight. (Fig ISW 7.6, based on
Bowen, 1988)
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The figures below show the motions of the outer layers above the photosphere
(at r > R« = 2x10"cm) without dust (left) and with dust (right).
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Fig 16.3 The motions of the outer layers above the photosphere (at r > R+ =
2x10%%cm) of a pulsating star without dust (left) and with dust (right). The
right figure shows that once the matter has reached a distance of 2R~ it is
accelerated outward by radiation pressure on dust and moves outward.
(Fig ISW 7.5, from Bowen 1988)

Fig. 16.4 shows empirical evidence that the mass loss of Mira variables is
related to their pulsation.

THE RELATION BETWEEN MASS LOSS AND PULSATICN PERICO
B e e e e e e
.
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rldeys!

Fig. 16.4 The mass loss rates of Mira variables increases with increasing

pulsation periods, until it saturates at a mass loss rate of about 10™ Mgn/yr.
(ISW Fig. 2.26, based on Vassiliades and Wood 1993)

117



Astronomy 531 University of Washington Spring 2014

16.3

16.3.1

Line-driven winds of hot stars (ISW Chapter 8)

Line driven winds are due to the transfer of the momentum of the stellar
radiation to the gas above the photosphere.

Hot stars with T = 30000K emit most of their light in the UV. This is also
where most of the abundant elements, mainly C, N, O, Si, S, Fe, etc. have their
strongest spectral lines, i.e. where the photons are most easily absorbed by
electron transitions in the ions. These specific ions are accelerated by the
repeated absorption or scattering of photons. Hydrogen does not produce any
radiation pressure because it is ionized and has no electron transitions. Helium
can add a little bit of the radiation pressure, but He Il has few absorption lines
and the strongest ones are very far in the UV where the stellar flux is low. So
only a small fraction of all ions are accelerated. However, because of the
frequent interactions of these ions with protons and electrons (Coulomb
interaction of charged particles), all the gas is dragged along.

A few simple estimates: the momentum of the wind

Suppose a particular abundant ion in the wind of an O-star, i.e. a C IV ion, has
one very strong absorption line at a wavelength A that corresponds to the peak
of the Planck function for that star. Assume that it is so strong that the line is
optically thick and absorbs or scatters all photons at its wavelength. How much
mass loss can one absorption line produce?

THE FLUX ABSORBED INM THE WIND BY OHNE STROWG LINE

Ve |

~{r]

continugm 4

flux Fe

Tz
qbsorbed
in the wind
Aur=rgv

o+ i =

Fig. 16.5. Upper figure: the velocity of a stellar wind increases from 0 at the
photosphere to v,, at large distance. Lower figure: the flux absorbed by one
strong spectral line of rest frequency vy, near the peak of the stellar energy
distribution. All photons emitted by the photosphere in the shaded area are
absorbed or scattered in the wind. (ISW Fig 8.2)

118



Astronomy 531 University of Washington Spring 2014

Suppose that the wind of that star has a velocity loss that increases from V =0
at the photosphere to V., at large distances. Due to the Doppler shift, those ions

absorbs all photons in the frequency range v, to vy (1 + %”). So the total energy
absorbed per second is

)

= fUO(H ¢ 4mRIF, dv = L,.Av  with Av = vove/c

Labs - Yo

The momentum of photons is hv/c so the total momentum transferred from

the radiation into the wind per second is L,;,/c. The momentum of a gram of

gas that leaves the star with a velocity m v = 1v,. So the total momentum

loss in the wind per second is Mve..

For a wind that is driven by the transfer of momentum from stellar photons to
the gas, Mv., must be equal to the radiative momentum put into the wind

per second, so

Mvy = Lagps /€ = Ly AV [¢ = L,V /c?

At the peak of the Planck function L, v, = 0.6L and so we find that one strong
spectral line can drive mass loss rate of

M = 0.6L/c* ~ L/c*| per optically thick spectral line.

For a hot star of L = 10°L, this corresponds to a mass loss rate of about
7 X 1078 Mg /yr. If the spectrum contains Neg optically thick spectral lines,
with N4~ 102, then the mass loss rate of that star is

M = NgL/c? = 10%2L/c? = 7.10"°Mg /yr

which is about the mass loss rate of luminous hot stars!

If the spectrum is completely covered with optically thick absorption lines then
all the photons from the star are absorbed or scattered in the wind and the
momentum of the wind is equal to the momentum of the radiation. This
provides and upper limit for a radiation driven wind of

M axVeo < LJC = |Mpax = L/VosC

The wind velocities of hot stars are typically 2 or 3 times the escape velocity at
the photosphere: v, =~ 3,/2GM /R

For a typical O main sequence star this is about v,, = 2000 km/s. So the
maximum radiation driven mass loss of an O-star of L =~ 10°Lg, is
1.107%Mg /yr and for a star of 106L, it is 107> Mg /yr. These values are close
to the observed mass loss rates of massive O and B supergiants.
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It is interesting to compare the kinetic energy loss of the wind, E,, = Mvgo/z,
with the energy loss by stellar radiation, L. For the 10°L, star mentioned

above:

Emax M UZ v,
w ~ max ¥ oo ~ ;’0 << 1
L 2L 2C

Even if all photons from the star are absorbed and scattered in the wind, the
wind carries away only a small fraction of the luminosity. The fact that the
observed mass loss rates of luminous stars are close to the expected maximum
values in case the winds are driven by radiation pressure, but the maximum
observed stellar wind energy is very much smaller than the luminosity of the
star, shows that these winds are driven by the momentum of the stellar
radiation and not by its energy.

Remarks

I. The first scattering (absorption + re-emission) of a photon that leaves the
star is most efficient for transferring its outward directed momentum,
because of its outward direction. The second or third scattering of the
photon is less efficient in this respect, because it will come from a random
direction.

ii. In the estimates above we have assumed that the outward directed
momentum of a stellar photon can be used only once. In reality, if there are
many spectral lines, and the photons are scattered multiple times, the total
momentum transfer can be increased by at most a factor of ~ 3. So some
hot stars have mass loss rates slightly higher than the value of M,
calculated above.

16.3.2 The lines that drive the winds of hot stars

Fig. 16.6 The wavelength distribution of the spectral lines that drive the winds
of luminous hot stars. (ISW Fig 8.10)

RELATNE FLUK (uFy/F)
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16.3.3

Fig 16.6 shows the fraction of the stellar radiation that is scattered or absorbed
in the winds of stars of different Te.

Notice the enormous numbers of spectral lines that can be used for momentum
transfer. At Ty <30 000K the driving is mainly done by absorption lines of
Fe-group elements (Fe, Ni, Co). At Te; > 30000K the ions of C, N and O are
mainly responsible for the mass loss.

Mass loss rates and wind velocities of line driven winds

The winds from massive stars are due to radiation pressure onto the outer
atmospheres of stars due to a multitude (~10°) of optically thick and thin
spectral lines in the UV. Both observations and theory show that the mass loss
can be described by a formula of the type

log(Mv.,RY*) = A + Blog(L/Lg) + Clog(Z/Zg)
with the left side in units of [Me/yr x 1000 km/s X sqrt(Ro)]

where A=-6.74 and Vo, ~ 2.6 Vs If Ter > 21000K
B=+1.51 Voo ~ 1.3 Vese  if 10000 < T < 20000K
C =+0.85 Voo ~ 0.7 Vese i 8000 < Tefr < 10000K

(A more elaborate and more accurate description is given in Sect. 16.4).
Fig. 16.7 shows the observed terminal velocities of the winds of early type
supergiants. Notice that the ratio v../ Ve is different for different stellar
temperatures ranges. The transitions between these regimes are called
bi-stability jumps.

THE OBSERVED RELATION BETWEEM WV AND V. FOR DB—STARS
. . . . T . . . . — . . .
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Fig 16.7: The observed relation between v, and Ve for the line driven winds
of hot luminous stars. (ISW Fig 2.20, after Lamers et al. 1995)
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The physical reasons for this expression comes from the theory of line driven
winds as first described by Castor, Abbott and Klein (1975, ApJ, 195, 157),
called CAK theory, which predicts (ISW 8.7.1)

1 a—1

M~ Le M  with Mg=M(@1-T,) and T, =0,L./4mc GM

where T, isthe Eddingtion factor (see Sect 8.3) that corrects the stellar mass
for radiation pressure by electron scattering, and

Voo = 2vesc ~ (Meff/R*)l/Z
where a is a factor, 0 < a < 1, that describes the ratio between the contribution
by strong (optically thick) spectral lines and weak (optically thin) spectral lines

to the line radiation pressure.

So the momentum loss of the wind is

1
. 1 -1/2 1_E+1/2
Mve, ~ LY*R.°M .
Itturnsoutthat a« ~2/3 so 1-— i + % =~ 0 so the mass drops out of the

expression for the wind momentum. This is nice because the mass of a star is
usually much less well known than L, M, or v,.. SO we can expect

1
D,ps = MveoR? ~ LY@

where D is called “modified Wind momentum” (Kudrtizki et al 1995).
Observations show that this relation is so tight, that it can be used to derive
luminosities of massive stars, if the mass loss rates and wind velocities are
derived from spectra. Stars with known distance and luminosities can be used
to determine the proportionality constant.

s e Eig 168
| ~ 1 The observed modified wind

i ,/f/"_/, momentum versus L relation.
29 } T i .
& ol e Grey bands are observations
o 28 S {  of Galactic, LMC and SMC
g2 S 20 Yy =027, i stars by Mokiem et al. (2007).
4 S {  Dashed lines show the
| i predictions by Vink et al.
| ; (2001), discussed in Sect 16.4.
T a5 so  ss  eo
ogllUL )
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16.3.4

Q?

16.4

16.4.1

Mass loss rates of massive main sequence stars

M 30 50 80 100
log L/Lo 5.15 5.58 5.97 6.16
log M -6.51 -5.86 -5.27 -4.99

A few typical values for main sequence stars. These rates are so high that
massive stars lose about 10 to 20% of their initial mass during the MS phase!

Check this!

Mass loss formulae used for stellar evolution

Massive O, B, A stars

Vink etal. (2001, AA 369, 572) predicted mass loss rates of luminous hot
stars of L>3 10" L, based on the line driven wind theory, using Monte Carlo
simulations to follow the track of a large number (>10°) of photons in the wind
and derive their momentum transfer from photons to the gas. These predictions
fit the observations very well. They derived formula of the type:

log M = A+ B log (L/10° Lgun) +C log (M/30 Mgyp) + D 10g (0.5 Vao/Vesc)

with M in Mgn/yr, Zsin=0.02 and V.. /ves as described in sect 16.3.3.

For the temperature ranges of 27500 < Tes < 50000 and
12500 < T < 22500 the constants are respectively

A =-6.697 -6.688
B =+2.194 +2.210
C =-1.313 -1.339
D =-1.226 -1.601
Trer =40 000 20 000
E =+0.933 +1.07

F =-10.92 0

G =+0.85 +0.85

These formulae are now used in most stellar evolution codes.
Fig 16.8 shows a comparison between these predictions and observations for
luminous hot stars in the Galaxy, the LMC and the SMC.
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16.4.2

16.4.3

Q?

16.4.4

Wolf-Rayet stars

Wolf-Rayet stars are late stages of massive stars that have almost completely
lost their H-rich envelope. (They will be discussed later)

Nugis and Lamers (2000, AA 360, 227) derived an expression for the mass loss
of Wolf-Rayet stars from the observations of 64 C-rich and N-rich (WN) stars.

M ~28107° (1%)1-29 Y17 795 where Y is the Helium mass fraction
Non-pulsating Red supergiants: the Reimers-relation

Reimers (1975, Mem. Soc Roy Sci Liege 6° Serie 8, 369) derived mass loss
rates of 6 red giants and supergiants with 4 < M < 18 Mgy, 10° < L < 10° Lgun,
40 < R <600 Rgyn and 3500 < Tt < 5000 K. He derived the empirical relation

L R Mg

— 2y

M=-4x10"8n,

where ng is a correction factor that was later added to adjust this to more
observations and different types of late type stars. This is the famous Reimers
relation, which is often used in evolution codes to describe the mass loss rates
of cool stars.

What would 7y be if the Reimers relation was used to predict M of the Sun?
Notice that this empirical relation implies that

MM/R ~M(GM/R) ~ MvZ, ~ L .

Winds of cool supergiants and AGB stars have v,, < V... S0 the Reimers
relation implies that for these stars a fixed fraction of the stellar luminosity
is used to provide the potential energy of the winds, that allows the gas to
escape the gravity of the star. (This is different from the case of the hot stars
where the momentum of the wind scaled with the momentum of the radiation).

Pulsating Miras and AGB stars

Vassilidadis and Wood (1993, ApJ 413, 641) derived empirically from the
infrared of dusty winds (see Fig 16.4)

logM = —11.4 + 0.0123 P(days) if P < 600 days and M < 2.5 Mg
logM = —11.4 + 00123 {P(days)-100 (5 — 2.5)}
©

if P <600 days and M > 2.5 Mg
logM = —4.0 if P > 600 days
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H16.2

all with
log Pgaysy = —2.07 + 1.94log(R./Rp) — 0.910g(M /M)

The terminal velocity of these winds is about 5 to 20 km/s.

Homework

a. Calculate the mass loss rate at the ZAMS and TAMS of stars of
20, 40, 60, 120 My, and solar metallicity, using Schallers (1992, AA Sup
96, 269) stellar data and Vink’s equations.

Hint: The TAMS is the point in the models where X is “almost” 0 in the
center, and the star makes a short left loop in the HRD.

Take the mean value and estimate the fraction of mass that is lost from
these stars during the Main Sequence.

Compare this with the mass that is lost in Schallers models and realize that
Schaller calculated his models before Vink made his predictions.

b. Do the same for 60 Mg,, models of LMC and SMC metallicity and compare
it with the solar metallicity.

c. Calculate the mass loss rates of non-pulsating red giants (H-shell burning)
of 1, 2 and 5 Mg Lgyn at (a) the end of the MS phase = beginning of the red
sub-giant branch, (b) when the star reaches the Hayashi limit and (c) when
the star has reached the tip of the RGB. Use Reimers formula =1
Use the duration of the sub-giant phase and the RGB in Table F for solar
metallicity to estimate the total amount of mass that is lost during H-shell
fusion.

d. Calculate the mass loss rates of pulsating cool stars of 1, 2 and 5 M.
using the data for AGB stars from Appendix F.

Homework

Calculate the mass loss rates for a variety of O, B and A stars with
L>3 10* Lgun, for which the Vink et al. (2001) predictions apply,
using stellar data from Appendix B1 to B3.

Show that these predictions support the empirical statement that
D ~L" and derive the empirical value of «.
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17.  Mass ranges of Post-MS Evolution

For describing the evolution of stars it is useful to separate five ranges of their
intial mass

a. Mi<0.08 Mg: these stars do not reach H-fusion and are brown dwarfs.

b. 0.08 < Mi < 0.8 Mg: these stars go through H-fusion, but will not reach
He-fusion, so they end as He-rich white dwarfs.
The evolution of these stars is not discussed in these lectures because
their MS lifetime is longer than the Hubble time.
(He-rich WDs can be formed in close binaries with mass transfer or
mass stripping if the stars were initially M = 0.8 Mo.)

c. 0.8 <Mi < 2 Mg: in these stars the fusion of Helium is ignited in a
degenerate core so the stars go through a Helium flash and end as CO-
rich white dwarfs.

d. 2 < Mi < 8 Mg: in these stars the Helium fusion is ignited in a
non-degenerate core so they go through a Helium flash, but they do not
make it to C-fusion because of insufficient core mass or due to severe
mass loss in the AGB phase.

e. Mi = 8 Me: these stars can go through all evolution phases and end
their lives as supernovae.

The mass limits between these regions have been derived from stellar evolution
models compared with observations. The mass limits between the regions are
not very strict because they depend on metallicity, mass loss and overshooting.
For instance, more overshooting will give more massive cores; and lower mass
loss rates on the AGB will allow stars initially less massive than 8 Mg to reach
C-fusion.

In addition, the evolution of close binaries may involve mass transfer (accretion

or stripping) or severe mass loss (non-conservative mass transfer) or even
merging. All of these effects may drastically change the evolution of a star.
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18.

H-Shell Fusion and the Red Giant Branch

18.1 The start of the H-shell fusion

18.2

When H is exhausted in the core, the core contracts. The layers around it also
contract and their temperature increases to above T > 10’K; i.e. hot enough for
shell H-fusion.

In the stars of M = 1.2 Mo, which had a convective core during the MS-phase,
the whole star contracts before H-shell fusion starts. This is because the whole
core is out of H at the same time due to the egalization of the abundances by
convection. This produces a shrinking of the stellar radius and produces a small
leftward motion in the HRD (see tracks in Fig 14.1 and Appendix E).

(N.B. There is no shell mirror-action in this phase because the shell is not yet
ignited.) This shrinking of the radius ends when the H-fusion is ignited in the
shell.

In stars of M < 1.2 Mg the H-fusion in the shell starts gradually because the
chemical profile is gradual. So as the core contracts, the regions around it where
fusion is going on at a slower pace gradually become hotter and denser. So the
transition for H-core fusion to H-shell fusion is smooth. So the envelope of
these stars does not contract and the evolution tracks do not show the small
leftward loop (see tracks in Appendix E)

The H-shell fusion phase of a star of 1 Mg

We first describe the evolution of a 1 Mg star as an example of the evolution of
astar with 0.8 < M < 2 M.

In presenting the evolution of the stars we will use the combination of their
tracks in the HRD combined with their Kippenhahn-diagram (Kippenhahn,
1965). These diagrams show the changes in the interior structure as a function
of time (horizontal axis) and mass fraction (vertical axis), with various colours
and shadings to indicate regions of different fusion phases, convection and
composition changes. The combination of the Kippenhahn diagram with the
HRD provides very good insight into stellar evolution.

The figure below shows the evolution in two ways:

1. The evolution track in the HRD.

2. The Kippenhahn diagram (KD) with the letters corresponds to the location
in the HRD at that time. The fusion regions are indicated by hatched areas
with thick and thin hatching for efficient and inefficient fusion.
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Fig 18.1 The Kippenhahn diagram and the HR-diagram showing the evolution of a
star of 1 My. Hatched areas indicate fusion regions. Dark hatched for efficient
fusion (¢ > 5 L/M) and light hatched for inefficient fusion (¢ <5 LIM). Grey
regions indicate convection. The light grey area indicates semiconvection.

(See Pols, Fig. 9.5, for a colour version.)
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Q?

A-B: The main sequence phase of H-fusion in the core.

B: H becomes exhausted in the center (X < 10°®) at point B. At that point H-
shell fusion starts. Because of the mirror effect of the shell, the outer layers
expand as the core contracts and the star moves to the right in the HRD.
Meanwhile an increasingly fraction of the stellar mass becomes convective.
The phase B-C lasts about 2 Gyrs. The star is now on the “sub-giant branch.”

C: At this point about half of the stellar mass is convective and the star is so
large that it reaches the Hayashi line. From now on it is a “red giant”.
Around that time the He-core has become degenerate!

C-D: The H-shell fusion keeps adding mass to the degenerate core, which
therefore contracts. (Degenerates cores shrink as mass is added). Because of
the mirror-action of the H-fusion shell, the envelope expands. The star is on
the Hayashi line, so its Te hardly changes, which implies that the expansion
results in an increasing luminosity. (The star climbs the Hayashi line in the
HRD during the “red giant branch “ phase). As the core contracts the density
in the shell increases because it is directly on top of the degenerate core, and so
the shell-fusion becomes more efficient. This produces the increasing
luminosity required by H.E. and T.E. for stars on the Hayashi track! Notice
that the mass in the fusion shell gets smaller (narrower in the KD) because less
mass is needed for the higher fusion-efficiency.

The star climbs the red giant branch for about 0.5 Gyr.

D: Near point D the outer convection reaches so deep into the star (to m(r) =
0.25), that the products of H-fusion from the main sequence are mixed to the
surface. The surface abundance may now start to show evidence of a slight
enrichment by He (difficult to detect in spectra of cool stars) and change in N
abundance (from 0.0013 to 0.0020) and a decrease of C and O.

This is called “the first dredge-up.”

Check this with the Schaller models (1992).

D-E-F: As the degenerate core gets more massive, it keeps shrinking and so
the star keeps expanding and the luminosity increases. The H-shell fusion
reaches hotter layers and becomes more efficient, producing the required
luminosity. This results in a faster and faster growing of the core and an even
more rapid increase in luminosity, etc. This acceleration of the evolution can
clearly be seen in the KD, by the fast growth of the core mass. The increase in
efficiency of the shell fusion can also been seen in this diagram, because the
mass of the shell decreases whereas its energy output (luminosity) increases.

E: At this point the shell has reached a mass zone, m(r) = 0.3 Mg, which was
earlier reached by the deepest extent of the convective envelope. The
convection has mixed fresh H from the outer layers down to this depth.
(Although the main H-fusion occurred in deeper layers, there had been some
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Q?

Q?

depletion of H due to inefficient fusion during the MS phase. This can be seen
in the Fig 14.4: at the end of the MS phase X was reduced to about 90% of its
initial value.) So at phase E, the H-fusion shell finds itself in a layer with a
higher H content and a lower mean atomic weight than before. As a
consequence, it starts burning at a slightly lower rate. In fact, its luminosity
temporarily decreases (because Ly depends on p) and the star moves slightly
down the Hayashi track as it shrinks a little. This produces a “loop” in the track,
that is shown in Fig. 18.2. The star spends about 20% of its RGB time near this
loop. This produces the observed red clump in the luminosity distribution of
RGB stars.

(Note: the luminosity of the red clump depends very sensitive on the stellar
parameters such as metallicity and adopted overshooting)

Why is it so sensitive to these parameters?
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Fig 18.2 The loop in the RGB evolution of a star of 0.8 Mgy, occurs when
the H-fusion shells finds itself in a layer where the H-abundance is larger
because envelope convection. This loop causes the red clump in the observed
luminosity distributions. (Fig 5.16 from SC)

E-F: During this phase the shell is burning in a region of higher H-abundance,
so the fusion can be slower and still produce the required luminosity. Therefore
the phase from E-F lasts longer than the phase D-E, although the luminosity is
higher.

Check this on the KD and the HRD.

F: At this point the degenerate core has reached a mass of about 0.45 M.
The contraction of the core has resulted in a temperature high enough for
igniting He-fusion in the degenerate core. The star leaves the Red Giant
Branch.
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18.3

18.4

Q?

The H-shell fusion phase of stars of 1-2 Mg

The H-shell fusion of stars in the mass range of up to 2 Mg is qualitatively
similar to the one described above. The main difference is that the cores of stars
with M > 1 Mo become degenerate at a slightly later age on the RGB. Once
they have a degenerate core, the evolution of the cores is similar for all stars
with 1 <M < 2 Mg because the shell fusion is then set by the mass of the core
and the pressure of the shell directly on top of it.

The H-shell fusion phase of stars of 2-8 Mg

The H-shell fusion evolution of stars more massive than Mi > 2 Mg, is similar to
that of the lower mass stars, except that the core does not become degenerate
during this phase.

Fig 18.3 shows the HRD and KD diagrams of a star of 5 Mg, as a typical
example. It also shows the evolution of the different Lagrangian radii.

A-B-C: This part of the evolution is the similar as for the lower mass stars.
Because the star had a convective core during the MS phase, the transition from
H-core fusion to H-shell fusion is more abrupt than in a star of 1 Mo The star
briefly contracts as a whole, which results in the short leftward motion (B-C) in
the HRD (compare tracks in Fig 18.1 and 18.3). The H-shell fusion starts at C.

C-D: When the H-fusion in the shell starts the mass of the He core is 0.4 Mg,
which is below the Schonberg-Chandrasekhar limit for stable isothermal cores.
This means that the core does not have to shrink, so the star remains in thermal
equilibrium. The core is not very dense, so the pressure and density in the shell
is not very high. This means that a relatively large fraction of the stellar mass is
in the H-shell (larger than for a 1 Mg star). This is called thick shell fusion.

As more Helium is added to the core, it is on its way to reach the S-C limit so it
slowly contracts. The H-shell layer then comes in a region of higher-density
where the fusion is more efficient, so a smaller mass fraction is needed for the
production of the luminosity by H-fusion: the mass fraction of the shell
decreases. This is called thin shell fusion.

Because of the mirror-action of the H-fusion shell, the envelope expands and
becomes more and more convective. At D the star is almost fully convective
and has arrived on the Hayashi line for red giants.

Check this in the KD and the HRD.

The figure shows that the luminosity in phase C-D is decreasing. Because the

outer convection zone grows very deep into the star in a short time, (less than 2
Myr from t = 81 to t = 83 Myr) the expansion also occurs on a short timescale.
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Part of the energy produced in the shell is then used for expansion of the
envelope, from about 5 Re in C to 50 Re in D. Hence the slight decrease in L.
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Fig 18.3 The post-MS evolution of a star of 5 My shown in the HRD

(fig @), the KD (fig b) and the expansion and contraction of the different
Lagrangain layers (fig c). Thick shaded regions indicate efficient fusion (H or
He fusion) and thin shaded regions indicate inefficient fusion. The gray regions
indicate convection zones (Pols: figs 9.2, 9.3, 9.4. see Pols for colour versions )

D-E: The mass of the He core exceeds that of the S-C limit, so the core
contracts and pulls the H-fusion with it. The contraction of the core occurs on
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18.5

18.6

the Kelvin-Helmholtz timescale which is only about a Myr: the evolution from
D to E is fast.

E: The convection reaches its maximum depth close to E. The convection has
then reached the layers where the composition has been changed due to the
former H-core fusion. Products of this fusion are then brought to the surface.
This is the first dredge-up phase.

F: Helium fusion starts in a non-degenerate core.

The core mass —luminosity relation for RGB stars

Stars with M; < 2 Mg have a degenerate helium core when they are on the
RGB. In these stars the density contrast between the core and the envelope is so
large that they are practically decoupled. This implies that the efficiency of the
shell fusion is completely determined by the core-mass and not by the envelope.
Detailed evolutionary models have shown that there is a strong and steep
relation between L and the core mass for stars with a degenerate He-core.

L/Lg = 2.3 X 10°(M./Mg)® Notice the strong dependence!

The luminosity is independent of the total mass of the star. Therefore, all
evolutionary tracks of stars of different mass converge onto the Hayashi line of
the RGB. In other words, from the location of a star on the RGB one can easily
derive the core-mass, but the total mass is more difficult.

Metallicity dependence of the RGB

We have seen that fully convective stars are on the Hayashi line, which gives
the coolest Tes that any star with a given luminosity can get. We derived this
location by setting the pressure in the atmosphere at T =~ 1 equal to the pressure
of a polytropice star (n = 1.5) at that same density. However, the opacities of
stellar atmospheres depend on metallicity (even if H is the dominant opacity
source) because the metals provide the electrons for H™ . A higher metallicity
provides more free electrons and a higher opacity. A higher opacity means that
T = 1is reached at a lower density, i.e. further outward. So the Hayashi line for
metal rich stars is at slightly lower T (further to the right), than that of metal
poor stars.

This is the reason that the metallicity of globular clusters can easily be derived
from the location of the RGB in the HRD (no spectra are needed).

This is shown in Fig. 18.4 which shows the CMD of the cluster M54, which is

the center of the Sagitarius Dwarf Elliptical Galaxy. Therefore it had multiple
star formation periods with different metallicities due to infalling gas.
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Mass loss on the RGB

During the RGB stars are losing mass by means of a stellar wind. For low
luminosity RGB stars the wind is possibly driven by gas pressure in a
chromosphere , although radiation pressure on molecules has also been
proposed. For stars higher up on the RGB, the pulsating Miras, the winds are
driven by a combination of stellar pulsation and radiation pressure on dust.

In many stellar evolution calculations the Reimers relation (Sect 16.4.3) is
adopted with a free efficiency factor ng = 0.25 to 0.5, which seems to give
reasonably good evolution predictions.

Adopting this description, a star of 1 Mg loses about 0.3 Mg on the RGB and a
star of 5 Mg loses between 0.5 and 1 Mg during the RGB phase. This is shown
in the KDs of Figs 18.1 fora 1 Mg star and in Fig 18.3 fora5 Mo star by the
decrease in the mass.
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19.

19.1

Ignition of Helium Fusion in Low Mass Stars:
from the tip of the RGB to the Horizontal Branch

We have seen that stars with M; < 2 Mg have a degenerate helium core at the
end of their RG phase (tip of the RGB is point F in Fig 18.1).

On the other hand, stars with M; = 2 Mg have a non-degenerate helium core
at the tip of RGB (point E in Fig 18.3)

The He-flash in degenerate cores of stars of M < 2 Mg

When the mass of the degenerate He-core reaches a value of about 0.45 Mo,
(independent of the total stellar mass !) the core has contracted so much that it
reaches the ignition T of He-fusion at T, ~ 10° K. Ignition in a degenerate core
results in an explosive start of the fusion: the predicted “Helium flash.”

The reason is the following:

When He is ignited, the produced energy leads to a T-increase.

- In anon-degenerate core, such a T-rise would result in an increase in P and
the core would expand (because P would become larger than required for
hydrostatic equilibrium). Due to the expansion, T and p decrease, and this
would reduce the fusion efficiency. The energy production drops and the
core shrinks until it reaches hydrostatic equilibrium again. So in this case
gravity acts like a regulator: the fusion does not run out of hand.

- In a degenerate core the ignition of He-fusion produces a T-rise, but this
does not result in an increased P, because in a degenerate core P is
independent of T! So T rises, but the core does not expand so the density
does not change, the energy production € increases drastically (remember
that € ~ T for He-fusion!). This leads to more efficient fusion, still higher
T, ...etc. A degenerate core that is ignited acts like a bomb!

As the temperature shoots up and reaches a value of a few 10° K, the
degeneracy is lifted. This is because the limit between degenerate and ideal gas
issethy Tc~pc2® (Figs 15.1) and so for any density there is a T where the
gas is no longer degenerate. The density of the degenerate He core is about 10°
g/lcm®, so degeneracy is lifted when T, =3 10® K.

From then on the pressure increases when T-rises, so the core expands very
quickly, the density drops and the degeneracy is lifted. The star then settles into
a normal (non degenerate) He-core fusion in hydrostatic equilibrium.

The star is now on the “Horizontal Branch” in the HRD = point G in Fig 18.1
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19.2

The luminosity produced in the core during the He-flash is very high, and of
order 10™° Lg (1), but it lasts very short. The Helium flash has never been
observed! The energy of the flash is used to expand the originally degenerate
core by a factor 10° in volume (from a degeneracy density of order 10° to non-
degeneracy at 10* g/cm®). Neutrinos also remove a substantial fraction of the
fusion energy.

During the ignition of the Helium fusion by a Helium flash the star is clearly
out of hydrostatic and thermal equilibrium. Therefore we cannot plot a track in
the HRD between point F and G! The evolution track just jumps from F to G
in Fig. 18.1.

The start of the Helium core fusion in stars of M = 2 Mg

When the mass of a Helium core reaches a mass of about 0.45 Mo, Helium is
ignited. The ignition of the Helium core fusion in a star of M; = 2 Mg occurs in
a non-degenerate core. This means that the gravity regulates the start of the
fusion as described above. These stars are also found on the Horizontal Branch
when the Helium core fusion has started. During the slow transition from the
top of the RGB to the HB, the evolutionary track can be followed: see the loop
from phase E to F (when helium fusion is ignited to F) in Fig. 18.3

NB: In both the low mass stars with degenerate cores and the intermediate
mass stars with non-degenerate cores the helium fusion is ignited when the
helium core has reached the same mass of 0.45 Me! This turns out to be
important for the Horizontal Branch morphology.
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20. Helium fusion in the core: the Horizontal Branch

When He-fusion has started in the core, the star settles into a new equilibrium
and we find the stars on the Horizontal Branch (HB) in the HRD.

This is shown in the evolution track of a 1 Mg star ( Fig 18.1) as the
instantaneous transition from point F (= He-flash) to point G (= start of He-
fusion in the core).

The He-fusion (G-H) occurs at L =~ 10 Lo, with a core mass of ~ 0.5 M.

The track of 5 Mg shows a more gradual transition from H-shell to He-core
fusion (D-E). The fusion (F-G-H) occurs at L = 10° Ly, with a core mass of 0.9
Mo.

HB stars consist from inside out of:

- Core with He-fusion: He — C.
Due to the strong T-dependence of the 3 a-process the inner ~ 1/3 of the
core is convective.

- Inert He-region around it without fusion.

- H-fusion shell

- H-rich envelope. This envelope is mainly radiative equilibrium, but with a
convective outside (check the KDs!).

HB-stars have a smaller radius (— higher Tes) than Red Giants. This is because
of the Virial Theorem and the resulting “mirror effect” of the H-fusion shell: as
the core expands (because degeneracy is lifted), the envelope shrinks — smaller
R+, higher Tes. This is shown by the loop F-G-H in the evolution track of a 5
Mo star, whose T increases to about 6000K, and to a smaller extent also in
track of the 1 Mg star which reaches 5000K at its smallest radius.

The duration of the HB-phase of a 1 Mg star is about 0.1 Gyr and that of a 5 Mg
star is 22 Myr. This is longer than the expected nuclear lifetime of star with a
luminosity of about 10° L (for 1 Me) or 10° Le (for 5 Me), considering the
high luminosity and the small mass deficiency for Helium fusion (0.0007). This
is due to the large contribution of the energy production by the H-shell fusion.
(see Homework 20.1 and 20.2)

The Helium fusion occurs originally by the 3 a-process (3 He — C), but as the
Helium abundance decreases and the C abundance increases, the reaction

H + C — O becomes more important. So at this point the C abundance starts to
decrease again but the O-abundance increases in the core.
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H20.1. Homework

Study the Kippenhahn diagrams for stars of 1 M.

a. Derive the amount of Helium that is fused during the Horizontal Branch
phase (F-H) and calculate the total amount of generated energy.

b. Derive the amount of energy generated by the H-shell fusion during the same
period

c. Which fraction of the energy is due to the H-shell and which fraction is due
to the Helium core?

d. Compare your results with the luminosity and the duration of the HB phase.

H20.2 Homework

Q?

Do the same for the 5 My model.

The evolution on the Horizontal Branch

Because the He-fusion phase lasts only a fraction of the H-fusion phase, all HB
stars in a cluster at any time come from a small range in initial masses. This
implies that they all have about the same core mass and therefore also about the
same luminosity at the beginning of the He-fusion.

So the HB is approximately horizontal in log L or My, but bends down at
high Te if plotted in V magnitude.

Why?

From the evolution tracks of 1 and 5 Mo we can see that a cluster of 12 Gyr has
a HB at 10% Lo, and a cluster of 0.1 Gyr has a HB at 10° L.

The radius of the HB-stars, and hence their Te (location in HRD) depends on
the depth of the convection in the H-envelope: the deeper the H-convection
zone — the larger R~ — the cooler the star. The tracks of 1 and 5 Mg stars
show that the depth of the convection decreases during the He-fusion, but at the
end it increases again. This explains why HB stars make a leftward-loop in the
HRD during core-Helium fusion and then move back to the Hayashi line. When
the convection zone reaches its minimum depth, that star has the maximum Te.

The He-fusion on the HB and the H-fusion phase on the MS differ in two ways:
(a) by the mirror action of the H-fusion shell in the HB phase and

(b) the evolution is determined by the properties of the core, and the envelope
follows.

Compare the radius evolution of a HB star, with that of a MS star. During the

MS phase the star expands (rightward motion in HRD), and at the end of the
MS phase the star contracts (short leftward loop). Because of the mirror
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20.2

principle, a star in the HB phase does exactly the opposite: contraction of the
outer layers during He-fusion in the center, when the core expands, and
expansion of the outer layers near the end of the He-fusion, when the core
shrinks. The expansion and contraction of the star is produced by the
increasing and decreasing depth of the outer convection zone.

The thickness of the convection layer (and therefore the hottest T that a star
can reach on the HB) depends on the envelope mass at the time the core-He
fusion starts. This is demonstrated in Fig. 20.1 which shows the location in the
HRD of low mass stars with Z=0.001 (charactic of old globular clusters) at the
start of the He-fusion phase.

The smaller the envelope mass, the bluer the star during the HB phase.

r— —— e T Fig 20.1

The wide grey line shows the
location of stars with the
same Helium core mass

(0.49 My) at the beginning of
the He-core fusion, for

| different total masses ranging
from 0.52 to 0.92 My, and so
| for envelope masses from
E— 0.03 to 0.43 M. The full lines
ore mass~0 4893 M, | show the evolution tracks
during the core-He fusion.
The location depends on the

HB models Z~ 102

14 43 42 41 40 39 38 37 envelope mass.
log Ty (Pols, Fig 9.8, from Maeder)

The observed HB in globular clusters

HB-stars in a clusters have about the same L, but the range in T reflects the
different amounts of H-envelope mass at the onset of the He-fusion. So to first
order approximation, the blue-extent of the HB depends on the amount of H
outside the H-shell fusion after the He-flash.

Observations show that metal poor cluster have in general an extended
Blue HB and metal rich clusters have in general a short Red HB.

This is shown in Fig 20.2 which shows the colour magnitude diagrams of a

metal rich globular cluster, 47 Tuc with Z=0.17 Zy,,, and a metal poor cluster,
M15 with Z=0.006 Zg.
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CMDs of two GCs of different metallicities. The HB of the cluster with the lowest Z extends
much bluer (higher Teff) than the high metallicity cluster. (CO Fig. 13.20)

The immediate conclusion to be drawn from the comparison with the figure
above is that stars in more metal rich clusters have a larger envelope mass when
the arrive at the HB than those in metal poor clusters. This would imply

that stars with higher Z have lost less mass during the RGB phase.

However, this is opposite to expectations because the RGB mass loss is
(probably) increasing with metallicity (more dust and more molecules to
produce radiation pressure) .

Models suggest that the extent of the HB is also sensitive to the initial He
abundance as shown in Fig. 20.3.
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Fig 20.3 The effect of different Helium and metal abundances on the extent of

the HB. A higher initial He abundance results in a wider HB.
(Fig from Lee et al. 2005, ApJ 621, L57. See their figure 1 in colour.)

140



Astronomy 531 University of Washington Spring 2014

However, some globular clusters have a Blue HB or Red HB although their
metallicity is the same! This suggests there must be another mechanism (apart
from RGB mass loss and metallicity) affecting the extent of the convective
envelope and the T of the HB stars. This problem is called the second
parameter problem.

Some of the solutions that have been suggested involve:

- The stars in some clusters may be faster rotating than in other clusters. This
would produce extra mixing (we will discuss the effects of rotation later).

- Convective overshooting may have played a role. This would result in a
larger core and a different chemical profile.

These effects could result in a different core-mass for stars of the same age and
metallicity and in a different depth of the convection zone on the HB.

Multiple stellar populations in clusters.

It is possible that second parameter problem is related to the problem of the
multiple stellar populations that have been observed in many massive GCs.
These clusters show multiple main sequences and different abundance ratios
within the custer, clearly indicating that not all stars in a GC had the same
initial abundances.

Two types of solutions have been proposed:

1. Multiple star formation episodes, where the mass loss products of massive
stars are gathered in the center of the cluster until enough enriched gas has
been collected for a second burst of starformation. These second generation
stars will be more metal rich and more He-rich. (D’Erocle et al. 2008,
MNRAS 391, 825). Most of the first generation stars have to be expelled
from the cluster to explain that it contains about 50 % second generation
stars.

2. The ejected enriched gas from massive star winds have been captured by
the accretion disks of low mass stars, which are forming much more
slower. The accreted enriched gas ends op in low mass stars as these cross
the central regions of the cluster where the gas resides. This produces a
fraction of the low mass stars to be metal rich and He rich. (Bastian et al.
2013, MNRAS 436, 2398).
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21. The Asymptotic Giant Branch phase for
starsof 1 <M <8 M.

At the end of the HB phase, when He is exhausted in the core, the core is
without energy source, so it will contract. Because the star still has a H-burning
shell (with mirror-action), the core contraction results in an envelope
expansion. So the star moves to the right in HRD. Because the expanding
envelope absorbs part of the energy, the luminosity actually decreases a bit
during the expansion. (This is seen in the track of the 5 Mg star, Fig 18.3, at
point H)

The core contracts until He starts to burn in a shell. In stars with an initial
mass in the range of 2 < M < 8 Msun the CO core will become degenerate.

The star is now at the bottom of the Asymptotic Giant Branch (AGB). This
corresponds to phase H in the evolution track of a 5 Mg star (Fig. 18.3).

An AGB star consists from inside out of:
degenerate C/O core,

He-burning shell : He - C — O
He-rich intershell zone,

H-fusion shell; H — He

convective H-rich envelope.

The internal structure of an initially 5 Mg, Star is shown in the figure below.
The star has a radius of 44 Re. Notice that the core, including the H-fusion
shell, is very small: 0.0056 R~. The core contains only 2 10" of the volume of
the star, but 1/5 of the stellar mass.

He-durning shell

— @,
@,
€0 core v _
““,

\.\‘

Fig 21.1 The internal structure of a 5 Mg, Star at the start of the AGB phase.
This shows the distribution of the different layers in terms of extent. The
distribution in mass is very different! (CO Fig. 13.8)
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21.1

In terms of mass, the distribution of this star is (see Fig 18.3 point H):
CO-core 0.40 Mg,n, He-burning shell 0.10 Mgy, He intershell zone 0.50 Mg,
H-burning shell 0.05 Mg, H and He envelope 3.25 Mgyp.

Total mass 4.30 Mgn.

The AGB phase is one of the most fascinating evolutionary phases because
several interesting physical processes are happening in that phase.

A. The C/O core becomes degenerate. For stars with a shell fusion around a
degenerate core the luminosity is set by the core-mass (we have seen this
already for RGB and HB stars). A star with a C/O core of 0.6 Mg has
L ~ 5x10° L no matter if the mass of its H-envelope is 0.4 Mg or 4 Mo!

B. The two shell burning phases alternate in producing the luminosity of the
star, with a periodicity of about 10° years, with the changes triggered by
shell-flashes. These are called thermal pulses.

C. The very deep convection can bring the products of the He-fusion (i.e. C) to
the surface. These are called second and third dredge-up. This can create
a sudden flip in surface composition fron a C/O-ratio < 1 to > 1. This has
dramatic effect on the dust around these stars. Even s-process elements,
produced in the thermal pulses are dredged to the surface.

D. The stars have very high mass loss rate due to the combination of pulsation
and radiation pressure on dust. The mass loss rate increases from about 10”
Mo/yr at the bottom of AGB to 10™ or 10™ Me/yr at the tip of AGB.

E. The end of the AGB phase and the final fate of low mass stars is completely
dominated by this mass loss. The mass of White Dwarfs is set by the mass
loss on the AGB.

The Core-Mass <> Luminosity Relation of AGB stars

The C/O cores of the AGB stars are degenerate, so there is a fixed

core-mass <« core radius relation. This implies that the pressure of the shells is
mainly set by the mass of the C/O core, and so is their energy production.
(This differs from normal, i.e. non-degenerate stars, in radiative equilibrium,
where L is usually depends on the total mass.)

Paczynski (1971, Acta Astron. 21, 271) has shown that this results in a relation
between the luminosity and the core-mass: usually called the Paczynski-
relation. (An analoguous relation exists for the RGB, when the H-burning
shell is on top of the degenerate He-core.)
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For AGB-stars the Paczynski-relation is: (for solar metallicity)

L ~5.9x10*(2 - 0.52)
Mg

Lo

Some values:
I\/Ic/Msun I—/I—sun
0.537 10°
0.689 10*
1.000  310*

This relation has interesting consequences:

- If we know L of an AGB star we know its core mass, but not the envelope
mass or total mass.

- For a given luminosity we know the rate at which fusion occurs. This fusion
adds mass to the core, so we know the growth of the core mass and the
increase of L. So we can easily calculate the “speed” with which these stars
will climb the AGB. (We will do this later).

- With the core growth, strong mass loss is reducing the mass of the envelope
and finally stopping it ascent on the AGB.

21.2 The second dredge-up at the beginning of the AGB phase

m (Mygn)

The internal structure of a star during the early AGB phase is shown in Fig
21.2. This is the KD of a star of initially 5 Mgy, of which the evolution track
and the KD of the earlier evolution were shown in Fig. 18.3.

5 e T ] Fig 21.2

E \ © Kippenhahn Diagram of the start
L | of the AGB phase of a 5 Mgy,
4 | star. The letters refer to the

< evolution track in Fig. 18.3. Note

the second dredge up at point K
- when the convection zone
| 1 reaches the He-rich intershell
2 & -1 zone. (OP Fig. 9.4)

H K J
||
] e

He ),yf
0

age (10° yr)
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21.3

Shortly after the He-shell burning starts, the H-shell burning is switched off,
at point H in the evolution track. The increasing core mass results in an
increasing luminosity, up to point J in the evolution track, which implies an
increasing radius, because the star is at the Hayashi Te lower limit. This
increase in radius is achieved by the deepening of the convection zone.
(Outer convection zones bloat the stars: the deeper the outer convection the
larger the stars)

When the convection zone reaches the He-rich intershell zone it mixes the
products of H-fusion (CNO-cycle) with the outer envelope and brings it to the
surface. The inter shell zone had no more H, a very low abundance of C and O,
but a high abundance of N. The amount of the abundance change at the surface
depends on the ratio between the mass of the intershell zone and the mass of the
envelope.

This is called the second dredge up.

The second dredge up is similar to the first dredge-up during the RGB phase,
but stronger.

Thermal Pulses and the third dredge-up of AGB stars

When the star climbs the AGB the star goes through a series of He-flashes that
are called “thermal pulses” at time intervals of ~ 10° yr to 10* yr. (Do not
confuse the thermal pulses with the He-flash that started the He-core burning).

The basic reason for the occurrence of pulses is the unequal burning rate of the
the H-burning shell and the He-burning shell. The H-shell leaves more He
behind than the He-shell can fuse, so the region between the two shells, the
intershell region (ISR), grows in mass until it becomes unstable. See Fig 21.3.

Fig 21.3
Hshall usion Sketch of the
mass evolution of the
He-burning shell and
He shell {uston the H-burning shell
and the He-rich intershell
C/o core degererate region during the
e AGB phase.

Min|

This results in the two fusion shells (H-shell and He-shell) being alternatively
active. (See Fig. 21.4). Many pulses occur during the AGB phase.
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Fig 21.4 This figure shows the alternating activity of the two shells of

an AGB star of M;=7 My since the beginning of the AGB-phase.

The figure covers a period of 3000 yrs. Many of such pulses occur during the
AGB phase. (from lben 1975, ApJ 196, 525)

During thermal pulses, interesting mixing processes occur. For understanding
the time sequence, follow the description in Fig. 12.5 (from Pols section
10.1.1).

convective envelope

e~ et et

e pocket

ICZ

intershell
region

nmeass ——

“~[He shell flash |

dEgFHEFﬂIE’ core

time

Fig. 21.5 The internal evolution of an AGB star during two thermal pulses decribed in the
text. (see OP Fig. 10.3 for a colour version).

1. Most of the time the H-burning shell produces almost all luminosity and
the He-shell is inactive. So in mass, M(r), the H-shell moves out faster than
the He-shell. This implies that the He-layer increases in mass.

146



Astronomy 531 University of Washington Spring 2014

2. As the intershell region (ISR), that consists of Helium, grows in mass, the
pressure at the bottom of that region steadily increases because more and
more Helium is piled on top of the degenerate C/O. When the pressure
reaches a critical value, helium is ignited in a thin shell.

3. Ignition in a thin shell leads to a thermal instability of the same type as the
ignition in a degenerate core, although the gas is not degenerate! The reason
is the following: When the fusion is ignited, the gas is heated and it
expands. However, if the shell is very thin (thinner than about 0.25 times its
radius) the expansion is not enough to bring down the temperature so the
fusion keeps going at a faster rate until the layer has time to expand and
then the shell burning is stable. So it looks like a flash in degenerate gas, but
the reason is different. (See Pols section 6.5.2 for details.)

4. As the He-shell fusion starts, it produces so much energy (up to 108 Lo) that
the ISR becomes convective and expands. The H-shell is pushed upwards
where the pressure drops to a value that cannot keep the H-fusion going. So
as the He-shell fusion goes on, the H-shell fusion is extinguished. This lasts
for about 10° years.

5. When the He-shell fusion is active, the ISR becomes convective (due to the
large energy flux that cannot be transported by radiation). This convection
in the ISR distributes the products of the Helium-fusion (mainly C) over the
ISR. The intershell convective zone (ICZ) is shown in the figure.

6. When the He-shell fusion is active and moves outward in mass into the ISR,

the degenerate C/O core contracts.
Q: Why?

As the core contracts, and the He-shell is active, the envelope expands. As
the star is on the Hayashi line, it can only expand by deepening its envelope
convection region. So the outer convection now moves into the ISR which
is now enriched with He-fusion products and brings these to the surface.
This is called the “third dredge-up.”
It brings C to the surface, but also s-process elements that are formed
during the thermal pulse!

7. After the dredge-up, the H-shell becomes active again and the He-shell
becomes inactive. As the H-shell moves outward in mass, the ISR grows in
mass again until the pressure at the bottom of the ISR is again so high that
the He-shell is ignited again and then the cycle is repeated.

8. The duration of the active He-shell is typically about 10° yrs, and that of the
active H-shell (i.e. the time in between two thermal pulses) is about 10°
years for the more massive AGB stars of M > 4 Mg, and 10 years for the
lower mass AGB stars.
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9.

10.

The phase of the repeating thermal pulses is called “the TP-AGB phase.”
Each cycle brings more and more C to the surface, so that eventually the
massive AGB stars near the tip of the AGB phase have a photosphere with a
C/O ratio > 1, instead of the classical case of O/C > 1. These stars are easily
distinguished because instead of O-rich molecules and dust (i.e. silicates)
they have C-rich molecules and dust (carbonaceous-grains). The flip from
an O-rich to C-rich atmosphere is drastic because the CO-molecule is the
most abundant and strongly-bound molecule. So when O/C > 1 all C is in
CO and the remaining O forms OH-molecules etc. and silicate dust. On the
other hand if C/O > 1, then all O is locked in CO-molecules and the
remaining C can form molecules such as CH etc. and carbon-dust.

In the most massive TP-AGB stars the H-shell is active at such a high
temperature that the H-fusion occurs via the CNO-cycle and not via the PP-
chain. This implies that C (that was transported by convection of the ISR
during the time when the He-shell was active) is converted into N. This
process is called “hot-bottom burning” and it may prevent TP-AGB stars
to become very C-rich and become instead N-rich at the surface.

Hot bottom burning also produces nuclei like ‘Li, *Na, Mg and **Mg, which
are found to be overabundant in globular clusters with a second generation of
star formation.
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21.5 Summary of the dredge-up phases

wD

The dredge-up phases of stars of M; < 8 Mg are shown below.

PNN

post~-AGB

N
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7 Figure 11.8, Schematic evolution track
L / of a low-mass star 1 the H-R diagram
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Fig 21.6 The dredge-up phases during the late evolution of low mass stars. The

changes in surface compositions are written next to the track.
(OP fig. 11.5)

1.

The first dredge-up occurs when the star is on the RGB and the envelope
convection reaches the depth where He was enriched during the MS phase.
This results in a small increase of He at the surface.

The second dredge-up occurred in the early AGB phase for stars of M; > 4
Mo when the star expands after the HB phase. This expansion is produced
by the growing of the convective envelope. It reaches even below the depth
(in mass) of the H-shell during the HB phase. So it reaches into the He-
layer! It brings He, and N-rich and C-poor and O-poor gas, mixed with the
original envelope mass to the surface. So the photospheres become enriched
in N.

Is N enriched by the same factor as C is depleted?

The third dredge-up (or rather dredge-ups) occurs during the later AGB
phase when the envelope convection after the thermal pulses reach into the
ISR which does not contain H but mainly He and products of the He-fusion,
such as C. The surface gradually becomes C-richer. This also brings s-
process elements, such as technesium (Tc¢) to the surface. These are the S-
stars.

For the most massive AGB stars the C/O ratio may even change from <1 to
> 1. These are the C-stars.

All of the envelope mass of AGB stars is expelled by mass loss during the late
AGB phase. AGB stars are the main producers of C, N and s-process
elements in the Universe
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21.6

The Evolution Speed During the AGB phase

Because the luminosity during the AGB phase is set by the coremass, but the
growth of the coremass is set by the luminosity, there is a simple way to
estimate the speed with which a star ascends the AGB-branch.

The luminosity of AGB stars is related to their core mass by the Paczynski-
relation.

= = 5.9 X 10*(5= — 0.52)

0 Mo

On the other hand, the core mass grows due to nuclear fusion. About 90% of
the time the fusion is dominated by H-shell and 10% by He-fusion.
The energy production of H-fusion is 6x10"® ergs/g . € = 5.5x10% ergs/g
The energy production of He-fusion is 6x10"" ergs/g

dM;/Mg _ L _ 5.9x10* (MC
dt € 5.5x1018

~0.52) = 1.1 X 107 (5= — 0.52) per sec

Mg o

din(M;/M@—0.52)
dt

=2.1x10"1sec™! = 1/1.4 Myr
This yields

o052 = (££—0.52) - et/1M
Mg Mg r=0

Now substitute M./Mg — 0.52 = (5.9 x 10*)"L/Lg

L(t) = L(t = 0) - e*t/14Myr|  ,  e-folding time only ~ 1.4x10° yrs

where t = 0 is defined as the time when the star enters the AGB with a
luminosity L = 10° L.

Suppose a star enters the AGB at L ~ 10° L, (see fig 18.3) then it will reach
L ~5x10° Lo att~2.3x10° yrs with M. =0.60 Mg
L ~3x10* Lo att~4.8x10°yrs  with Mc~1.0 Mo

So 1. AGB stars ascend the AGB fast = exponentially in few 10° yrs
2. During that time the core mass increases to ~ 0.6 Mg or larger.
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21.7

Mass Loss and the End of the AGB Evolution

Observations of White Dwarfs in clusters show that stars with initial mass up to
about 6 or 8 Mg end their lives as white dwarfs with M ~ 0.6 Mo. So obviously,
most stars must terminate their AGB phase with M; ~ 0.6 Mg or L ~ 5x10° Lo.
More massive WD with M ~ 1 Mg must have reached L ~ 3x10* Lo at the
AGB-tip.

We have seen before that stars climb the AGB in an exponential function of
time, so the mass of the core also increases exponentially with time. What could
stop this growing of the core? Mass loss!

Observations show that all AGB stars suffer mass loss at a rate that increases
from 107 Mo/yr at the bottom of the AGB to very high values of ~10™° M/yr at
the tip of the AGB. We have seen before that the high mass loss rates of AGB
stars are due to pulsation and dust driven mass loss.

We now describe a simple method to estimate the effect of mass loss on the
AGB and to predict the mass of the resulting white dwarfs.

Suppose we can describe the mass loss rate Mying as a function of L, then we
can also describe it as a function of t (because L = f(t)).

Let Men(t = 0) be the envelope mass when the star enters the AGB. The
envelope mass decreases due to:

Inside: 1. Nuclear fusion: (dM,,,/dt) = —dM_,/dt
Outside: 2. Mass loss by the stellar wind = (dM,,,/dt),, = —Mying
dMeny _ _nd — M .
So at dt Mwmd

Throughout most of the AGB phase mass loss by the wind is more efficient in
reducing the envelope mass than the growth of the core. In that case

Menv = _Mwind - A]\/Ienv = wainddt

We want to estimate how long it takes to remove (almost) the full envelope
mass.

For simplicity, let us adopt the well-known “Reimers-relation” (sect 16.4.3) ,
with np = 2 although it is not the most accurate one for AGB stars.

Y -13 ., . L/Le)(R/Re)
M, ~4 X 107" ng /M) in Molyr
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Using L(t) derived before and R = (L/4maTz)/? for constant T, ~ 2500K
gives R/Rg = 5.2(L/Lg)Y?. Now, with M, = M, + M,,,, we can solve the
decrease of envelope mass as a function of time.

Let us make a simple estimate for a star that enters the AGB phase with M =3
Mo, consisting of a core of M. = 0.54 Mg and an envelope of Mg, = 2.46 Mg at
t = 0. The Paczynski relation predicts that L, = 1.2 x 103Lg att=0.

Since L is the dominant variable in the Reimers relation for M, we take T ~
2500K is constant and adopt a mean < M, >= 2M, during the AGB phase of
this star.

In that case

1.5t

. 3 —
M, =2.0x10"2(L/Lg )z =2.0 x 10712(1.2 x 10%)3/2 - eTaWyr Mg /yr
M,, = 8.3 x 1072 exp(t/0.95Myr) Mg/ Myr (1)

Integration gives
AMenv = fot _det = 8.0 X 10_2 et/0-95Myr 1‘4®

This shows that the total mass of the envelope, 2.46 My, is removed by the
wind after 3.2x10° yrs! At that time L = 1.2x10% Lg and M, = 0.72 Mo.

Compare this with:
a. the observed maximum L of AGB stars in the Glob Cluster M3 (fig 1.3)
b. the derived mass of the White Dwarfs <Mwp>~ 0.6 M

So we see that:

1. The AGB terminates because mass loss has stripped (almost) the full
envelope.

2. The final mass of the WD is determined by M (AGB)

3. The maximum luminosity of the AGB stars is set by M (AGB)

4. The mass loss of the AGB prevents that stars in the mass range of about
2 to 8 M become supernovae.
(If it was not for this mass loss, the SN-rate would be much higher!)

5. We see from this simple estimate that we can expect the AGB lasts about
3 Myrs and that it ends at L ~ 10* L with a degenerate core mass and
~0.6 Mp!

We have used the Reimers’ relation for M (AGB). Observations show that the
mass loss on the AGB increases more drastically near the tip of the AGB and
reaches a value of a few 10®° Mo/yr during a short superwind phase. This is
important for the formation of Planetary Nebulae (to be discussed later).
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H21.1 Homework

Calculate the evolution of two AGB-stars that start the AGB with
Mx= 2.0 Mp and M¢ = 0.522 Mo
M«=5.0Mp and M.=0.55 My

Use the mass loss rate derived from IR-flux of OH/IR stars (= AGB stars), and
its relation with the period of pulsation (sect 16.4.4), or the Reimers relation
with n=2 (whichever is the larger of the two).

Assume the relation between T and L from the track in Fig 18.3.

1. Write the differential equations that describe L(t), Mc(t), Meny(t).
Solve them by computer. Assume that the AGB evolution ends when the
envelope mass is smaller than 0.01 M.

2. Calculate L(t), Mc(t), Meny(t) and indicate where pulsation driven mass loss
dominates.

3. What is the core mass M and L at the tip of the AGB? How long does the
AGB phase last for these stars?
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22.

22.1

The Post-AGB Evolution and

Planetary Nebulae
The Post-AGB Phase

Evolutionary calculations show that a star will leave the AGB when the mass in
the H-envelope has decreased to only about 10 to 10 Mg, depending on the
core mass. At that time, this little amount of H-envelope mass cannot keep a
fully developed convection zone. The convective envelope now slowly shrinks
and part of it becomes non-convective, but radiative. This is first in the deepest
layer of the envelope, where k is smallest.

The star still has double-shell fusion around the degenerate core and its
luminosity is still given by the Pazcynski-relation of the AGB-phase.

This post-AGB phase is short, about 10° to 10* years, so the core mass does not
increase much during that time. This means that the star moves horizontally to
the left in the HRD.

The post-AGB evolution track of a star with a degenerate core of 0.6 Mgy,
that leaves the AGB with an envelope mass of 0.003 Mg, is shown in Fig 22.1

T T P—— — Tt —p—
Fundamental 20,000
s
Core helium blue leu — ruy‘m.u," N
“ar buming band _ 7 ) 20000 .
e 3000 oooisd) |/ _~fo0ons)
S000 tul (0.00147) o
10,000
10.00080) (0.0011))

14 b 0.00049)

3 15,000
-2 O HOO2T)
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\ Main
15} \ sequence
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.
49 . Last thermal
18,600 pulse begine !
(0.00027) % !
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Loge T, (K)
Fig 22.1 The post-AGB evolution track of a star of M=0.60 and Me,,=0.003
Msun. The numbers in parentheses indicate the decreasing envelope mass. The
other values are the times, in years, compared to the moment when
Teff=30000K. At that time it is the central star of a planetary nebula (CSPN).
The full crossing takes 3 10* years. Notice the 10 thermal pulses on the AGB

and the decrease in L when Mgp, < 0.0005 Mgyn. (Fig from CO fig 13.3, based on
Iben 1982).
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The location of the star during the horizontal crossing in the HRD, i.e. its T
and R, depends on the mass of the envelope. As long as Men, ~ 10% M for a
high luminosity AGB, or 10° Mg for a low luminosity AGB, the star remains
close to the AGB. But as the shells keep fusing, the envelope loses mass to the
core, so the envelope mass decreases steadily. This forces the envelope to
contract, as it has less and less mass to keep the envelope extended by
convection. The star keeps moving to the left in the HRD.

When T, = 30000K and the radius has decreased from 2000 Ry, t0 3 Rgyn, the
star is the central star of a Planetary Nebula (CSPN) as we will show later. At
that temparture the star develops a line driven stellar wind, the same we
discussed before for the hot luminous stars, with a mass loss rate of order 10
to 10°® Mo/yr or so (strongly dependent on luminosity as M ~ L) and a
terminal wind-velocity of about 1000 to 4000 km/s. So now the envelope loses
mass even faster: not only to the core but also to the wind, and so the crossing
of the HRD goes even faster. The speed of the crossing is determined by the
continuing mass loss from the envelope! The crossing time is of order 10° to
10* years.

When the envelope mass has decreased to as much as about ~ 3 10 or 3 10
Mo (depending on L) the star is on the left of the HRD with a small radius of
about 0.25 Rgyn and T. = 10°K. Soon after that the fusion stops completely
because the envelope does not produce sufficient pressure anymore for the
fusion to continue.

Fig 22.2 Schematic description of star during crossing of HRD

AGB Post AGB Central Star PN End of HRD crossing
Menv -~ 3 10-3 Menv -~ 2 10-3 Menv -~ 10-3 MenV ~3 10-4 MO

Fully conv. env. small region most of envelope  total envelope
in rad. equ. inrad. equ in rad equ.
shell fusion decreases

During the first part of the post-AGB track, the star is invisible, because it is
hidden in the dust that was ejected at the end of the AGB-phase, during the so-
called “superwind phase ” when the mass loss rate was as high as 10™* Mo/yr.
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22.2

22.3

At T ~ 30,000 K, two effects start to happen at about the same time:

- the star is so hot that it develops a radiation-driven wind (driven by UV lines)

- the high UV flux starts to (1) destroys the dust grains of the late AGB wind,
(2) dissociates the molecules, (3) ionizes the ejected material.

So part of the circumstellar material (AGB wind and star wind) becomes
ionized — H 1l region — Planetary Nebula (to be discussed later).

Born-Again AGB stars

In some cases, a star experiences a last thermal pulse while it is moving to the
left of the HRD. This is possible because we have seen that the time between
two thermal pulses is on the order of 10° to 10%yr and the HRD-crossing time is
also of that same order. It is estimated that about % of all the AGB stars will
have a late thermal pulse when they have already left the AGB.

The two most famous examples are Sakurai’s object (discovered in 1996 by a
Japanese amateur astronomer) and FG Sagittae (FG Sge).

FG Sge was discovered to be variable in 1943. In 1955 its spectrum suggested
that it was a blue B-type star that was slowly getting redder. In 1991 it was a
yellow F star and then kept going to the red where it ended as a K-star.

The star was the central star of a PN. This means that it had been an AGB star
before and had already crossed the HRD to the left and produced a PN a few
thousand years ago. When it was a hot star, the last thermal pulse produced so
much energy that the thin envelope expanded again which resulted in an
increasing radius and a decreasing Tes: its return to the right of the HRD.

Planetary Nebulae

For a long time PN were explained in terms of the central star ionizing the
previous AGB wind. The problem with this idea was that the expansion speed
of the PNe is typically vexp ~ 50 km/s, but the AGB winds are ejected with Vags
~10-15 km/s. How could the AGB material have been accelerated?

At about 1975 it became clear that central stars of PN (CSPN) have a stellar
wind with mass loss rates ranging from 10°® to 10° Mo/yr, with the higher
values reached at Tt ~ 30 to 40 kK, i.e. when the star is halfway its crossing
over in the HRD. The wind velocities are about 1000 to 4000 km/s, scaling
approximately as Viing = 4 Vesc.

Based on these new discoveries Kwok (1975 and 1978) proposed a completely
different scenario for the formation of PN.
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Planetary Nebulae are the result of the interaction between the slow AGB
wind and the fast CSPN wind!
(See Lamers & Cassinelli ISW section 12.5 for a detailed description of theory.)

Fig 22.3

A model for the formation of Planetary
Nebulae: the fast wind from the central
star runs into the slow wind ejected
during the AGB phase. The interaction
region (black) is shock heated and
ionized, producing the nebula.

Outside the nebula is the un-shocked cold
AGB wind. (ISW Fig 12.8)

It is easy to show (ISW 12.5) that the velocity of the interaction region between
the slow AGB-wind and the fast CSPN wind is

- McsVcs
Von (t) = Vags {1 + /—MAGBVAGB}

Adopting mean values of My ~107 and M,cz =~ 10™ Mgn/yr and
Ves = 2000 and V5 = 20 km/s, we find that Vpy= 40 km/s, in agreement
with the observations.

The mass of the interaction region, part AGB wind and part CSPN wind, is

. Magg/V
Mpy(t) =t X M¢s /%

where t is the time since the wind of the CSPN has reached the AGB wind.

Q? Explain why the expansion velocity of a PN depends on the ratio
MCSVCS/MAGB VAGB

The Table below (ISW Table 12.1) shows the results of calculations.

Notice that:

- The mass of the interacting zone (i.e. the PN) after 10* years is of order 0.2
Mo, which is only a small fraction of the mass ejected on the AGB.

- The expansion velocity is of order 30 — 50 km/s which is much faster than
the AGB wind and much slower than the CSPN wind.

- The size of the PN after 10* yrs is about 0.2 to 0.5 pc.
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Table 12.1 Planetary nebulae gas shell parameters from the interacting wind

model

M

Mo

s g

3 x 1077
3x 1077
1 x10°%

The subscript

M T Ues Urg Vilr) &!‘,'m

M m k M

bl - 107 yr 10; yr
1 x10°% 1000 10 27 0017 0027
Ix10°% 1000 10 40 0009 0041
Ix10°% 1000 5 44 0024 0045

0.31
0.12
0.08

“s” refers to the shocked interaction region, which is the PN.
The mass and the expansion velocity of the PN refer to 1000 yrs after the onset
of the fast wind.

Note: Most PN have complex morphologies that require additional effects to
be taken into account such as:
- rotation and non-spherical winds of AGB stars

- binarity

- magnetic fields.
(see Balick and Frank, 2002, ARAA,; and July 2004 Scientific American)
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23. White Dwarfs
23.1 The Evolution of White Dwarfs

When Mgy, < 10 to 10 Mg (depending on L) the shell fusion stops, the
luminosity decreases and the radius decreases. The star moves into the WD-
cooling track (see Fig 22.1). All stars with initial mass M; < 8 Mg end their
lives as WDs.

White dwarfs are stars that are electron non-relativistic degenerate, so their EoS
is P ~p°"2. This means that they are polytropes with y=5/3 or n = 1.5.
Combining this EoS with hydrostatic equilibrium gives the mass radius relation

for WDs.
5 5 55

P, ~GM?/R* ~ (p/u)3 ~ M3 / u3R3

SO
IR ~ M~/3 or M ~ Vol !

Numerically:
H-wWD AlZ=1 R =3.2 X 10*(Myp/0.5M5)~ /3 km
Heor COWD A/Z=2 R =1.0 X 10*(My,p/0.5M5)~ Y3 km

Since the mass remains constant, the radius remains constant. So an evolution
track (cooling track) of a WD is along a line of constant R!

The luminosity of WD comes from the cooling.

The electrons cannot cool ! because they are degenerate, so their energy
distribution is set by the density (which does not change) and not by the
temperature. Only the ions can cool and they contain almost all of the mass of
the WD. The loss of thermal energy is converted into radiation at the
photosphere.

Initially the ions had a temperature of order 10° K, which was the temperature
of the Helium-fusion shell and also that of the isothermal core. Such young
very hot WD cool down fast and so their luminosity is relatively high (~10™
Lo). However, as the ions cool, the luminosity decreases and so the cooling
slows down even more and the luminosity decreases over time.

(For the derivation of the cooling time: see Pols 10.2.1)

Cooling time:
45x107 ([ L/Ly \“%/7|. 3
Teool = — =" (M/MO) In yrs Wion = 2 for He and C,0
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23.2

OB R o e T, A 7 s B P B e
CO WD 0.6 Muun
+ sunple cooling theory

4 detailed cooling model

lﬂg L L‘\:_m

PR NN OO 70N VO 1SV (N O Y S YWY I VA 770 Y i s
(8] 5 10

t/ 109 y1
Fig. 23.1 The cooling curve of a CO-WD of 0.6 Msun. Dotted line: simplified
model (Mestel 1952). Full line: taking into account crystallization (Winget
1982) (OP fig 10.8)

To go from PN (L ~ 10* Lo) to 10 L (average ~1 Lo, takes few 107 yrs.
To cool down a WD from 107 Lo to 10 L, takes few 10° years.
To cool down a WD from 10™ Lo to 107 L takes 10™ years.

White dwarfs come in two groups:
1. with a spectrum dominated by H-lines = DA
2. with a spectrum dominated by He-lines =DB

This distinction is based on the spectrum. But that does not give information on
the internal composition! The gravity at the surface of a WD is high (~10°
cm/s?) and the atmosphere is so stable that gravitational diffusion made the
Helium settle below the (often extremely thin) H-atmosphere. WD that really
consist of H (instead of He or C-O) can be distinguished on the basis of their
mass radius relation!

The Chandrasekhar Mass-Limit for White Dwarfs

The Mass-Radius relation for WD shows that R will decrease as M increases.
However, as M/R® increases with increasing mass, the density may become so
high that the electrons become relativistic degenerate. If the WD is completely
relativistic degenerate the EoSisP ~p*3 -n=1/(y —1) = 3.
Combining this with the H.E. condition gives

P, ~ GM?/R* ~ (p/u)*'* ~ M*/3/R*

o)

M = constant for relativistic degenerate white dwarfs.
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This shows that relativistic degenerate stars can only exist for one specific
value of the mass. This is the Chandrasekhar mass limit

M, =1.46 (2/p.)* Mg with pe=1for H
ue =2 forHe, C, O

In reality this implies that stars with M > M, cannot exist. They will collapse
as a Supernova of type la (no H lines) = collapse of a C/O white dwarf.

0.03 UL L L L L L L L L L L B L L I
[ WD radii (Le = 2.0) ]
N ---- NR degeneracy (n=1.5)
L . —— Chandrasekhar theory
002F % B
; E \\\\
[ L “\ - _
= | 5
0.01 - -
(:}'00 | I I I | T I I N | T I I | | ]
0.0 0.5 1.0 1.5

M/ I\"Isuu

Fig 23.2 The mass radius relation of a helium or CO white dwarf.

Dotted line: the R ~M™? or V ~M™ relation for non-relativistic degenerate WDs.

As the mass increases and the radius decreases a larger and larger fraction of the WD
becomes relativistic degenerate. This is shown by the dotted line. The radius goes to zero
at the Chandrasekhar limit of 1.46 Mgy,. (OP fig. 10.6)
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24.

24.1

24.2

Stellar Pulsation

The instability strip in the HRD:
RR Lyrae stars, Cepheids and 6 Scuti stars.

There is a strip in the HRD where stars pulsate when their evolution track
passes through it : the instability strip
- Low mass metal poor stars cross this strip during core-He fusion on the
Horizontal Branch, where they are
RR Lyrae stars of spectral type A5 to A7 during maximum and F1 to F3
during minimum, with periods of 0.05 to 1 day, and L ~ 10% to 10° Ly, .
- Massive metal rich stars cross the instability strip when they describe a
loop HRD during the core-He burning phase, where they are
Delta Cepheids or simply Cepheids of spectral type F5 to F8 during
maximum with periods of 1 to 50 days and L ~ 3 10% to 3 10* Ly, .
WW Virginis stars are the metal-poor (Pop I1) equivalents of Cepheids.
- There is even an extension of the instability strip down to the main
sequence, where they pulsate as
Delta Scuti stars of spectral type ~F3 with periods of 0.1 to 0.2 days.
Both the low mass and the high mass stars also cross the instability strip when
the move from the MS to the Hayashi track during the H-shell fusion phase.
However this transition is so fast that the number of observed variables is much
smaller than in the longer phase of He-core fusion

All these stars pulsate in the fundamental mode and so their period scales with
the dynamical timescale:

c

P :CTdyn:\/T_ﬁ

with C of order unity.

The pulsation is in fact a standing pressure wave, driven in the ionization
zone, and travelling between the stellar center and the open outside.

Because the temperature structure in the different types of stars is not the same,
and so the sound speed crossing time depends on the evolutionary

phase, the constant C is different for the different types of variables.

The k-Mechanism

RR Lyrae stars, Cepheids and & Scutis are variable because of the «-
mechanism in the H and He-ionization zone. (x = absorption coefficient)

The x-mechanism works in layers which is partly ionized, because in ionization

zones the degree of ionization and the opacity can change during compression
and expansion.
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To explain this: let us first look at the working of a normal combustion motor
(e.g. in a car). For an engine to work, it needs heat input in the cylinder at the
right moment, i.e. when the gas is compressed. This is done by producing a
spark in the fuel during compression. This spark results in heated gas which
expands and drives the cylinder upwards. It is crucial that the gas is heated
when it is compressed! (If you would ignite the spark at the moment of
minimum compression, i.e. when the cylinder is at its highest position, the
motor would not work.)

i - -

* SPARK * HEAT NG = EXPANS ION

Fig 24.1 The working of a combustion motor. The spark ignites the fuel gas
when the gas is compressed. This heats the gas so its expands.

Compare that with the energy of an ionization zone in a star, i.e. at 2 — 4 10* K.
In a normal, fully ionized = non-pulsating layer:

Compression = p1, pT1, k| (because k ~ pT""?)

and so: radiation escapes more easily if a layer is compressed.

In a partly ionized = pulsating layer:
Compression - p? but T rises marginally because the heat goes into
ionizing the gas
- «7 and so radiation flow is blocked (trapped)
-> heat input during compression!
Expansion - pl, T about constant because gas recombines and releases
energy, k| = energy escapes.

This works like a motor because the ionization layer stores energy during
compression and releases it during expansion.

This effect can also be explained in terms of ya¢ (e.g. CO ch 14, OP ch 10.4).
A layer is pulsational unstable if y,q < 4/3. We have seen in Section 5.8 that
this happens in partly ionized zones. This is basically the same explanation
because it also describes how T changes during compression.

In principle this could work in the partial ionization zone of any star, but it only

produces an efficient pulsation if:

a. theionization = pulsating layer is not too deep, otherwise the layers above
it will damp the pulsation. This occurs for very cool stars. Q: why?

b. the ionization = pulsation layer is not too close to the surface, otherwise
there is no mass to push up and down. This occurs for the hot stars.

163



Astronomy 531 University of Washington Spring 2014

24.3

So: stars only pulsate via the k-mechanism if the partial ionization zone has the

right depth, i.e. the star has the right surface temperature. That is the reason

why there is an instability strip of RR Lyrae and Cepheids in the HRD.

———————— 2
—~i—

Wl =M, IM. |

He
._,,_J

L4 HhSou 75

4 b -

Effective tlomperatae (K

Fig 24.2 The depth of the Helium-ionization zone in stars of different Teg.

In the left model, the star is too cool and the He ionization zone is too deep:
and the layers above it damp the pulsation inside the star. In the right hand
model, the star is too hot and the ionization zone it not deep enough: there is
not enough mass above the ionization zone to push the ionization zone layer
the middle model the ionization zone is at the right depth for pulsation.

Pulsating stars in the HRD (c+op.547)

Notice that stars with radial pulsation (Cepheids, RR Lyrae, 6 Scuti) are all in a
narrow T-strip in HRD. This is the strip where the He-ionization zone has the
right depth. (The H-ionization zone is usually not very efficient: it is too close
to the surface with not enough material above it).

o AN Fig 24.3
For stars pulsating in the
fundamental mode,
Cepheids, RR Lyr, and ¢ Scuti,
the period scales with the
dynamical time P ~ 1/,/Gp
For narrow instability strip this
translates into a P-L relation

P =f(L)
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Stars can also pulsate in other ways:

- radial pulsation in higher n modes, i.e. overtones

- non-radial pulsation modes, in which the star changes shape, e.g. like
Bessel harmonic functions.

Non-radial pulsations can be due to
- gravity modes, (g-modes) in which gravity is the restoring force, or
- pressure modes, (p-modes) in which pressure is the restoring force.

An overview of the different types of variables is shown in Fig 24.4.

\
0/

log(L/1

Figure 10.11. Occurrence of various classes
of pulsating stars in the H-R diagram. over-
laid on stellar evolution tracks (solid lines).
Cepheid vanables are indicated with “Ceph’.
they lie within the pulsational instability strip
in the HRD (long-dashed lines). Their equiv-
alents are the RR Lyrae vanables among
HB stars (the horizontal branch is shown as
a dash-dotted line). and the § Scuti stars
(0 Sct) among main-sequence stars. Pulsa-
tional mstability is also found among lumi-
nous red giants (Mira variables). among mas-
sive main-sequence stars — S Cep vanables
> and slowly pulsating B (SPB) stars, among
2T . extreme HB stars known as subdwarf B stars
(sdBV) and among white dwarfs. Figure
from Christensen-Dalsgaard (2004).

DAVZ,

5.0 4.5 4.0 3.5
log T oy

Fig 24.4 An overview of all types of variable stars and their location in the
HRD. Notice the main instability strip for radial pulsation that covers the
Cepheids, RR Lyrae and o Scuti stars.

Radial pulsations

Radial pulsators have periods that strictly follow Period-Luminosity
relations,which are due to the fact that pulsations are standing waves with a
sound speed crossing time that is proportional to p°.

The most accurate P-L relations are those in the infrared, because the IR is in
the Rayleigh-Jeans part of the spectrum, where the magnitudes are less

sensitive to the details of the changes in spectral type.
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™ Flg 24.5
1 The P versus H-magnitude

relation of Chepheids in the LMC.
(Fig CO)

|5 Lo b | —— 1 .
05 1.0 1.5 20

Log o P (days)

Fig 24.6 shows the variations in L, T, R and vy, 0f an RR Lyrae star.
Notice that the velocity curve and My have a sawtooth shape, with maximum
luminosity corresponding to maximum outward velocity. This agrees with the
explanation of the k-mechanism, which requires that the radiation that is
trapped in the ionization zone is released during expansion !

Terr and R are almost anticorrelated, showing that minimum radius occurs just
before maximum Teg.

~24
-23
-22
3
= 2!
-20

T T T T Flg 24.6

Variation in Moy, Tet, R
and v during the pulsation
of an RR Lyrae star.
Notice that Te and R vary
almost opposite and that
maximum L coincides
with maximum expansion
velocity.

(Fig CO)

Effective tempenture (K)
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Most radial pulsators pulsate in the fundamental, n=1 mode, in which case
there is only one node. Stars can also pulsate in overtones, n>1. In that case
there are more (viz n) nodes. An example of a Cepheid with n=2 pulsation is
shown in Fig. 24.6.

Contraction / Expansion F|g 24.6
radiative zorg Schematic picture of a Cepheid
pulsating in the n=2 mode.

(Figure from Zima 1999, Master
~ thesis)

Node lines
Convective core

He II - Ionisationzone

24.5  Non-radial pulsations (NRP)

The pulsation pattern of NRPs is characterized by two quantum numbers (m,l):

- m describes the number of meridional nodes.
m=0 is symmetric around the rotation axis.
m=1 is two opposite moving (east-west) hemispheres, where one half is
moving upward when the other half is moving downward.
- I-mis the number of nodes in the latitude direction.
if I=m there are no latitude nodes.
Fig. 24.7 shows the modes for I=3 and different m modes.

Fig 24.7

The topology of NRP for =3 modes
and different m modes.

From upper left to lower right:
(m,I-m) =(0,3), (1,2), (2,1), (3,0)

Imi=1

Notice: m = nr of longitudonal zones
I-m = nr of latitudonal zones

(Figure from Zima 1999, Master thesis)

Imi=2 Imj={=3
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25.

25.1

The Evolution of Massive Stars

We have seen that massive stars (M > 8 M) can go through all phases of
nuclear fusion, up to the Fe-core. So the internal evolution goes by a series of
successive fusion-phases, ending with a shell like structure, consisting of shells
of different compositions.

Main characteristics of massive star evolution

1 The external evolution of massive stars proceeds mostly along horizontal
lines in the HRD, i.e. about constant luminosity, because the star does not
develop a degenerate core and most of the mass is in radiative equilibrium.

2 The luminosity increases slightly during the MS phase (due to the p-effect)
and when the star briefly reaches the Hayashi limit.

3 The evolution of massive stars is strongly influenced by mass loss.
Stars above 30 Mg, typically lose about 15 percent of their mass during the
main sequence phase so the products of nuclear fusion appear at the surface
right after the MS phase.

The evolution proceeds differently in three distinct mass ranges

(1) The stars with 8 < M; < 25 Mg become red supergiants (RSG) in their H-
shell fusion phase. (This is similar to the RGB of lower mass stars, but their
He core is not degenerate.) During their He-core fusion phase they make a
leftward loop in the HRD and temporarily become yellow supergiants.
(This is similar to the HB of low mass stars). The later fusion phases are all
spend as a RSG (Hayashi limit). In the end these RSGs explode as SN.
So their evolution track in the HRD is quite similar to those of stars of M>4
Msun but they never develop a degenerate core.

(2) The stars with 25 < M; < 50 Mg also become RSG, but their mass loss rate
is so high that after a short time at the Hayashi limit they have lost most of
their envelope and move to the left of the HRD. (This is similar to the post
AGB evolution of lower mass stars, but they do not become WDs). When
they are in the left of the HRD they have a very high mass loss rate and
their atmospheres are dominated by He, N and C. These are Wolf-Rayet
stars (WR-stars). They explode as SN in the WR phase.

(3) Stars with M; = 50 Mg become instable due to radiation pressure in their
envelope immediately after the MS, because they are very close to the
photospheric Eddington limit. They become Luminous Blue Variables
with high mass loss rates and occasional eruptions. They stay on the blue
side in the HRD where they become Wolf-Rayet stars and explode as SN.
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Fig 25.1 Predicted evolutionary tracks of massive stars with mass loss and overshooting
are shown in the Appendix E (from Maeder 2009). The figure shows the top part with
several phases indicated. Left-slanted dashed areas indicate H-core fusion. Right-slanted
dashed areas indicate later fusion phases. The leftward loops occur during He-core fusion
(equivalent to the HB of lower mass stars). The location of the Wolf-Rayet stars and the
Luminous Blue Variables are indicated. The Humphreys-Davidson limit (HD-limit) is the
observed upperlimit of stars in the HRD.
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25.2  The effect of mass loss during the MS phase

The evolution of massive stars is dominated by mass loss.
Fig. 25.2 shows the first calculations of the mass loss on the evolution
of massive stars.

T vy T A T A ]
-
| NO MASS A N  Mass t(MS)
el As 10° yr -
r .\__L___, 0 300 401
2} /. —— 100 268 4.78
5 .. / e .
2.2 / -~
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Fig 25.2 The effect of mass loss during the MS phase of a 30 My, star. The mass loss is
specified as dM/dt=N L/c? with N=0, 100 (=7 10" Mgu/yr on the ZAMS ) and 300

(= 2 10°® Mgun/yr on the ZAMS). Remember that L/c? is the mass loss rate produced by one
strong absorbtion line in the wind. The table gives the remaining mass at the end of the MS
(TAMS) and the MS lifetime. (Fig ISW, from Lamers and de Loore 1978)

The figure below shows the first calculations of the effect of mass loss on the
evolution of massive stars. Evolution without mass loss is “conservative”
evolution. We call the initial mass M; and the final mass Ms. For conservative
evolution Ms = M.

Notice that:

- The luminosity increases less than in conservative evolution. This is
because the total mass decreases and also the size of the convective core is
less than in conservative evolution. As a consequence, [ increases less.

- At the end of the MS the star is less luminous than for conservative mass
loss, but more luminous than expected on the basis of its actual mass, M.
This is because the star has a more massive He core than a star that started
with a mass Mt and evolved conservatively.

- The MS phase lasts longer due to the lower L.

170



Astronomy 531 University of Washington Spring 2014

25.3

- At the end of the MS phase the N-abundance increases at the surface: it is
an ON-star (O for spectral type O, and N for nitrogen). This is because the
core with convective overshooting has brought N into the radiative
envelope, up to the point where M(r)~0.9 M« When the star is peeled of by
mass loss during the mainsequence to this depth during, the enriched layers
appear at the surface. (This is different from the dredge-ups of low mass
stars, where the enriched matter is brought all the way to the surface by
envelope convection).

The predicted Photospheric Eddington Limit and the
observed Humpreys-Davidson upperlimit.

The photospheric Eddington Limit (Eddington dip)

Massive stars have such a high luminosity that they are close to their Eddington
limit for radiative pressure. We have seen that for massive stars with electron
scattering opacity in their interior, the Eddington limit

Le=4ncGM/oe =~ 3 t0410° Ly, with M~ 150 to 200 Mgy,. (Sect 8.3).
However in the upper envelope and the photosphere the absorption coefficient
is higher than o,. See the peak in k at T < 10° K for p <10 in Fig. 6.1 (p 34).
At photospheric densities of order 10" the opacity has a peak around 10 to 20
kK. A peak in k implies a drop in the photospheric Eddington Limit Lg(phot)
because Lg~ 1/k.

Lamers and Fitzpatrick (1988) argued that this results in a limit in the HRD that
has a minimum Lg around Teg =10 000 K. Stars that reach that limit when they
evolve to the right in the HRD after the MS phase will become instable and
suffer severe mass loss. The situation is sketched in Fig 25.3.

L s o L M Fig 25.3
prake « oA The effect of a bump in the

absorption coefficient in
photospheres of

Loag (phot] ~ 1 Ter ~10 000 K results in a
dip in the photosphere
Eddington limit, compared to
the standard (interior) Lg.

s0o 30 ‘o 3 e o (KK)
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The empirical Humphreys-Davidson limit (HD-limit)

The observed distribution of massive stars shows a conspicuous absence of star
above Mpo = -9.5, corresponding to L=5 10° Lg,,. This same limit was found
for the Milky Way, the LMC and SMC. (Humphreys and Davidson 1994, PASP
1026, 1025). On first sight this is strange, because more luminous main
sequence stars exist, and their evolution tracks are supposed to be horizontal in
the HRD. This shows that stars more massive than about 50 My, do not

evolve to the right of the HRD and do not become red supergiants.

o < B o o i S EELAE B BT e SR AW SRR SRD B S N Fig 25.5
12 b HUuHPREYS - DAVIL IO LitiT LM< ]
® OBSEFRVED wPvir LinT The Humphreys-

=N : Davidson limit

-10 (observed

-9 luminosity upper
2 s limit) in the HRD
= . of the LMC

- (Fig. Massey 2003,

-8 ARAA 41, 15)

-4

__3 ._._jik S D ey e TS0 Divas Gl WAE By 1SS /SO W Tes) OOY e 15

48 47 48 45 44 43 42 41 40 39 38 37 38 35 34
10g Teer

The observed HD-limit can be explained by the photospheric Eddington dip.
When stars more massive than about 50 Mg,n, (Mpo < -9.5) leave the MS and
expand during the H-shell burning phase, they will hit the down-sloping hot
side of the photospheric Eddington dip and their envelope will become
unstable. This is the Luminous Blue Variable phase. The stars lose a large
amount of mass in that phase, until the envelope is no longer massive enough to
let the star evolve to the right of the HRD. Remember that post MS stars evolve
to the right, i.e. increase their radius, because their envelopes becomes largely
convective. The star then shrinks at constant luminosity and becomes Wolf-
Rayet star.
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25.4  Luminous Blue Variables (LBVS)

Luminous Blue Variables (LBVSs) are very luminous blue supergiants with
L/ Lo > 3 10° that show large and irregular variations in their VV-magnitude. The
variations occur on timescales from weeks to years, with occasional large
eruptions
- every year or decade they change their radius: 30 Ro — 100 Ro.
After a few to ~10 years the radius goes back to normal.
- every few 107 to 10° years they have a “large eruption” (ala Eta Carina in
1860 and P Cygni in 1600) and eject ~ 1 Mg of gas.

These stars are found near the HD-limit, indicating that they are marginally
stable against radiation pressure. LBVs are rare: there are only a handful known
in our Galaxy.

Fig. 25.6 shows the variations in V of 2 LBVs: S Dor (Gal) and R127 (LMC).
Notice the large variations up to 1 or 2 magn over a period of about 10 years.
From: “LBVs: Astrophysical Geysers” (Humphreys and Davidson, 1994, PASP

106, 1025).
- e e .. \ 4 ’ - _f‘:.."—_..: 3
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Fig. 25.6 Lightcurves of two LBVs:

Left : S Dor (Galactic) from JD 2000-9000 (1973-1990).

Right: R 127 (LMC) from JD 5000-9000 (1983-1990).

Notice the strong but irregular variations of AV = 1.5 to 2.0 magn. on timescales
of years. (Fig from Spoon et al. 1994, A&AS 106, 141)

Observations over the full spectrum have shown that the luminosity of the LBV
remains approximately constant during these variations! This means that the

variations are due to changes in T and in the resulting bolometric corrections.
So the variability of LBVs is due to large radius variations, up to a factor 8.

Figure 25.7 shows the locations of LBVs in the HRD and their variability. When
the stars are faint, they are hot (Tef > 15000 K) and most of their energy is in the
UV. When they are bright, they are cool (Te ~8000 — 9000 K) and most of their
energy is in the visual.
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Fig 25.7 The locations of LBVs in the HRD. Each LBV makes horizontal

Spring 2014

excursions from the visual faint (high Teff and small R) to the visual bright (low
Teff and large R) regions. (Fig from Humpreys and Davidson, 1994, PASP 106, 1025

“LBVs. astrophysical Geysers”)

Notice than in the “hot” phase (visual minimum) the stars are very close to the

Humphreys-Davidson limit and to the photospheric Eddington Limit!

In the hot phase they are to the left of the Eddington-dip and in the cool phase
to the right. So the instability of these stars is somehow related to the fact that
their envelopes and photospheres are only loosely bound, but the real reason or

the mechanism is still not known.
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25.5  Wolf-Rayet Stars (WR)

WR stars are luminous stars (L > 10° L) that have such a high mass loss rate
(few 10” Molyr), that one does not see the photosphere but only the wind: the
spectrum is dominated by very broad emission lines formed in the wind with
velocities of V ~ 2000 — 4000 km/s. Their mass loss rates are high: 2 to 4 10
Msun/yr. (Nugis & Lamers, 2000, A&A 360, 227).

e — 1995000 -

WN§é : | Wer

e

e

LR
Wt

b2 2213

005

frew ateruty

Pl warary

Mot
“ ’
190808 00000 - cm
He { ‘ = B ne
g~ ..., - - - - ceev———— "y S—— . SR —— oo
OO0 4000 ANB0 S0 AN M B M e e P00 4000 4500 ONE AN 0T M MM ™M e
Wmeargh Asguiewy Fiovvarg® Anget e

fig 25.8 Optical spectra of a WN star and a WC star. The WN star shows
strong emission lines of H, Hell and NIII and NIV. The WC star has strong
emission lines of Hell and CIV. The width of the lines indicates outflow
velocities of ~2000 to ~3000 km/s. The numbers in the classification 6 and 7
refer to an Tex Scale that goes from 3 (very hot) to 8 (hot ) (Fig from I1SW)

il

WR stars are end stages (= peeled-off) of massive stars.
They are located to the left of the MS at 30 000 K < T < 50 000 K and
10° < L/ Lo < 10°.

There are three types. In order of age or stage of peeling:
WNL = late WN = WR star with strong N-lines and “late” spectral type,
Terr=~ 30 000 to 40 000 K.
Some H left, He-enriched, N-rich
These are very massive stars near end of MS
WNE = early WN = N-rich WR stars of early spectral type Te = 40000 K.
No More H, He-rich, N-rich, C-poor (= products of CNO-fusion)
WC = C-rich WR star
Tess > 40 000 K.
No more H; He-rich, C-rich, (= products of He-fusion)
WC stars are peeled-off further than WN stars.

(There is also a third class WO = O-rich, but that is not an abundance effect but

a high temperature effect, when the O IV lines become stronger than the C IV
lines.)
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An example of a 60 Mg Star with Mass Loss

As an example of the evolution of a massive star with mass loss, we show the
evolution track and the Kippenhahn diagram of a star of 60 Mg, calculated by
Maeder & Meynet (1989, AA 210, 155), tabulated in (1989, AA Supl 76, 411)

EVOLUTION OF A 60 Mg STAR WITH MASS LOSS
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25.7

Notice:

The upper limit in the lower graph shows the mass that remains.
(timescale is broken in three sections)
The mass of He-core after H-fusion is larger than the Schonberg -
Chandrasekhar limit. So the core immediately contracts after the MS and
He-fusion starts in the core almost right after the MS. (see the KD).

(This is different from low mass stars which have a phase of H-shell fusion:
the RGB phase).

In the very short time between the end of the H-core fusion and the He-
fusion, the H-shell is the only energy source, so the H-shell fusion is in a
thick layer. As soon as He-core fusion starts, the H-shell becomes less
massive.

Steep mass decrease at 3.7 Myr is due to LBV eruptions.

Changes in surface composition in various stages as function of remaining
mass are shown below. Correlate these with the tracks and try to explain
them.

Evolution life times of massive stars

The table below gives the lifetimes (in Myrs) of H-fusion, and He-fusion for a
grid of non-rotating massive stars (from Maeder & Meynet 1989 A&A 210, 155)

Table 2. Lifetimes in nuclear phases (in unit of 10° yr)

Initial H-burning He-burning C-burning
mass phase phase phase
120 M, 2.9379 0.5132 0.001050
85 3.3236 0.5007 0.001840
60 3.7135 0.6058 0.001940
40 4.7902 0.6405 0.004798
25 7.0894 1.1711 0.007103
20 8.8068 1.2570 0.008789
15 12.1149 1.6232 0.015516
12 17.4571 2.6948 0.024600
9 28.7123 4.5948 0.058900
7 47.3028 9.6774 0.25:
5 98.8419 27.1461 -
4 173.993 42.0780
3 398.803 128.956 -
2.5 733.586 234.196 -
2 1679.88 326.690 -
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25.8

Summary of the Evolution of Massive Stars:
the Conti Scenario

Before 1970 there were categories of massive stars with strange properties, e.g.
the N-rich ON stars, the Of stars with many emission lines, the N-rich Wolf-
Rayet stars (WN), the C-rich Wolf-Rayet stars (WC), the Luminous Blue
Variables, etc. The evolutionary connection of these stars was totally unknown!

When mass loss from massive stars was discovered in the mid-late 1970s, Conti
(1976) suggested a scheme for the evolution of massive stars, based partly on
observations and partly on predictions that connected these different types in
evolutionary sequences. (Conti 1976, Mem. Soc. Royale des Sciences de Liege,
9, 193; see also Maeder & Conti 1994, ARAA, 32, 277)

Conti-scenario

For M = 50 Mg (always blue)
O-star — Of-star - BSG - LBV - WN - WC - (WO) — SN

For 25 Mg <M < 50 Mg (blue-red-blue)
O-star — BSG - YSG — RSG — WN - (WC) - SN (high mass loss)
- WN -SN (low mass loss)

For M < 25 Mg (blue-red)
O-star — BSG — RSG - YSG (and Cepheid) - RSG - SN

The different types of stars in this scenario are:

@) = O-stars without emission lines (low M, < 10™® Mo/yr)

Of = O-stars with emission lines (high M, > 10 Mo/yr)

BSG = Blue Supergiants (O, B, A)

YSG = Yellow Supergiant (F, G)

RSG =Red Supergiant (K, M)

LBV = Luminous Blue Variable (with Eruptions)

WN = WR star with N-rich wind, He-rich, some H (high M, > 10” Mo/yr)
WC = WR star with C-rich wind, He-rich, no H (high M, > 10° Me/yr)

NB: The limit of 50 Mg is somewhat uncertain. It is between 40 and 60 M.
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20.

26.1

The Effect of Rotation on Stars

Massive stars are in general rapid rotators, at least on the Main Sequence.
Rotation affects the evolution of stars in several ways.

i. A rapidly rotating star is not spherical but oblate, with a higher temperature
at the poles than at the equator.

ii. Rapid rotation in a star produces mediational circulation which can lead to
severe mixing and to the transport of angular momentum to the envelope.
This slows down the core and speeds up the outer layers.

iii. The winds of rapidly rotating stars are not spherical: it may be enhanced at
the equator (due to lower effective gravity) or at the poles due to the higher
radiative flux. This depends on the effective temperature of the star.

iv. Very rapidly rotating stars of high luminosity may become instable by the
combination of the large radiation pressure (I'-effect) and centrifugal force
(Q-effect). This results in an QI'-limit in the HRD, which is at lower
luminosity than the classical Eddington I'e-limit.

The Von Zeipel Effect

Lines of constant effective gravity, Qett = Ograv — Gcentr, IN rapidly rotating stars
are not spheres but become oblate, by the centrifugal acceleration, geent. The
critical velocity, v, is the equatorial rotation velocity where gess = 0 at the
equator.

2
Verit _ GMet D Py = GMer _ |GM,(1-T¢)
R..  RZ2 crit — R - R

eq eq €q eq

where we have used M. = M, (1 —T,) with T, = o,L/4mcGM to correct for
radiation pressure by electron scattering (Sect 8.3). Using v, = QR.q We can
express this in terms of a critical angular velocity

'chit = \/GM*(]- - Fe)/qu

Fig 26.1

The figure shows the lines of constant
gert for a rigidly rotating star,
rotating at about half the critical
rotation speed. (Fig from ISW)
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Lines of constant gesr are also iso-potential lines and iso-pressure and
iso-thermal lines. Close to the pole the iso-thermal lines are closer together than
at the equator. This implies that the T-gradient and hence the radiative flux
(local Tef) is higher at the pole than at the equator!

The Von Zeipel Theorem:
The local radiative flux is proportial to the local effective gravity

L
Fraa(Q,0) = 0T4(Q,0) = —— - gi(Q, 0) - Tor(Q, 0)~ gerr(Q, )4

4TTGM,

where Q is the angular velocity and © is the latitude (=0 and = at the poles) .
The total luminosity is

L, = 4n [T"* R2(8)F(8).sin (©)d®

As aresult, the Tesr and spectral type at the poles are hotter than at the
equator. This implies that the spectral type and the luminosity derived from
observations will depend on the orientation of the rotation axis compared to the
line of sight! Part of the widening of the MS of globular clusters could be due
to this effect (de Mink and Bastian, 2010).

The table below gives the mean values for main sequence stars (half way
between the ZAMS and TAMS) of to 120 Mg (from Maeder)

Tuble 4.1 Initial musses, actual masses, log luminosities, log g . radii. Eddington factoe I, critical
velocities v 1. spectral types and observed average rotational velocities for MS. stars at the middie
of MS evolution when the central H content X, 0.30. The masses, luminosities and radii are in
solar units. the velocities in km s ' The average observed rotational velocities ¥ are obtained from
the observed psing 1139, 463, 519] multipled by 4/x to correct for random ovientation effects. See
Table 14,2 for I at the end of the MS phase

Initial M Actual M Logl Logln R I Verin. | sP v
120 9% 96 6316 4,642 24 91 0544 711 03
85 77.61 6114 4,603 231.63 0436 640 0s 220
60 57.07 5 876 4.594 18.72 0343 623 06 220
40 IRT4 - 5. 551 4571 1432 02w SK6 0715 220
25 24.39 S 108 4.521 1079 0.136 S36 09 20
20 19.60 4.867 4,490 946 0098 S13 Bo 280
15 14.84 4533 4.444 796 0.060 487 Bo.s 290
12 1195 4.252 4.402 699 0039 466 (1] 30
9 899 3 857 4.3 593 002l 439 B2 233
7 7.00 VARS 4277 514 114 x 1077 416 B3 240
“ 500 2.956 4.184 4.29 4.70 < 10} 185 Bs 290
1 4.00 2 588 4117 382 252 %107 65 B7 320
) 300 2.090 4.026 V28 1.06 =101 342 no 260
2.5 2.50 1.759 1,968 292 598 =< 1074 130 Al -
2 200 1.353 3897 2.54 293 = 1074 M6 A7 160
1.7 1.70 1.055 1.846 228 1.74 < 104 W08 ¥l 1o
1.5 1.50 0825 1821 1.96 116 <107 2 3 75
1.25 1.25 0.488 31,795 1 50 6.41 = 10°° 125 ¥7 15
-
1

100 0.003 3.765 0.9% 258 =10 360 a2 <10

Notice that MS stars with M;>2 Mg, rotate at about half the critical velocity.
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26.2

Meridional Circulation

Rapid rotation induces meridional circulation due to shear-forces between
layers of different rotation speed. This effect is strong on the main-sequence.
The figures below show the circulation pattern in a MS star of 20 Mg (from
Maeder, Section 11).

r/R,
W
™

P W

JWEWE FTREE e

Fig 26.2 Two representations of the meridional circulation currents in a 20 Mg, MS star,
halfway between the ZAMS and TAMS. The initial rotation velocity is 300 km/s.

Left: schematic. Right: 3-D demonstration of the same pattern.

The inner sphere is the convective core. The inner circulation cell is rising toward the
pole and descending along the equator. The outer circulation is rising along the equator
and descending along the poles. (see Maeder Fig 11.2 for a colour version)

Meridional circulation is very efficient for mixing. In general, massive stars
only have convective mixing and overshooting in their cores. But rapid rotation
can produce mixing all the way up to the surface during the MS phase. This
explains the observed correlation between Vsin i and the N/C abundance ratio
on and near the end of the MS (Brot et al. 2011).

In the most extreme case, with very fast rotation, the mixing is so severe that
the star remains chemically homogenous. In that case a massive star evolves to
the left and upward in the HRD during its H-fusion phase, and evolves
gradually from the ZAMS for H-stars to the MS for Helium stars, which is to
the left and higher of the MS for H-stars (remember Homework 2.2).
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26.3  Non-Spherical Mass Loss of Rotation Stars

The winds from hot stars are driven by radiation pressure. Rapidly rotating stars
are more luminous at the pole, so they will have a higher mass loss rate from
the pole than from the equator. At the same time, the wind velocity V., will
also be higher at the pole than at the equator, because Vo, ~ V.

However, observations of massive stars often show that the wind density is
concentrated in the equatorial plane. For instance, Be stars (B main
sequence stars with optical emission lines) and B[e] supergiants (B-type
supergiants with forbidden emission line) have equatorial outflowing disks. So
in these stars the wind is concentrated along the equator and not along the
poles.

This can be explained by two effects:

a. The density of the wind scales as p,, ~ M /4nr?v,,. So even if M is higher
at the pole, the density of the wind may be higher at the equator because V.,
is smaller at the equator.

b. The wind changes its characteristics (M and V.,) around Tes ~ 21000K. This
is called the bi-stability jump. We have seen this already in Sect 16.3.3
and Fig 16.7 which showed that the wind velocity changes drastically from
2.6 Vescat Tegr > 21000 K t0 1.3 Ve at Ter < 21000 K.

At Ter > 21000K the wind is mainly derived by Fe 1V lines and at T <
21000K it is driven by lower ionization lines (Fe Il etc). This explains the
jump in V./Ves from 2.6 at Tesr > 21000K to 1.3 at Ter < 21000K.

A rapidly rotating star with T > 21000K at the poles may have Tes < 21000K
at the equator. At some inclination angle between the pole and the equator, the
structure of the wind may change due to the bi-stability effect, where the mass
loss increases and V., decreases towards the equator. So pwing increases strongly
toward the equator. This produces rotation-induced-bistability disks of B[e]
supergiants and possibly also the Be main sequence stars (Pelupessy et al. 2000)

Fig 26.3
Left: Mass flux from a rotating star of
100 Mgyn and L=3 10° L, with a
rotational velocity of 80% of the critical
velocity and assuming Tet =30 000K at
the pole. Right: the same star with T
=25 000 K at the pole. This star has a
g rotation induced bistability disk . (Fig
Maeder)
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217.
27.1

Late Evolution Stages of Massive Stars

Fusion phases

The late evolution phases of stars more massive than about M; ~ 8 Mq proceed
at an increasing speed. This is mainly due to the loss of energy by neutrinos.
For a star to remain in equilibrium its energy production has to be Lot = Lyag +
L, with L,q required to maintain hydrostatic and thermal equilibrium and L, is
the neutrino loss. The timescale of each phase is approximately

A
t = Mpyq X (?m) ' CZ/(Lrad + Lv)
where Mq IS the mass of the nuclear material available for fusion.

The table in Sect 25.7 gives the timescales of the H, He and C fusion phases
for stars of different masses. Notice the very short time of the C-fusion phase,
less than 10* yr for stars initially more massive than 15 Mg,,. The later
evolution phases go even faster.

The Table below gives the timescales of the different fusion phases for a star of
15 Mgun. The Ne-fusion and O-fusion lasts about a year, whereas the Si-fusion
lasts only a few weeks. (from Wooley et al. 2006, ARAA 44, 507)

burning stage T (10°K) p(glem’®) fuel main products  timescale

hydrogen 0.035 5.8 H He 1.1 x 107 yr

helinm
carbon
neon
oxygen
silicon

0.18 1.4%x 10> He C.0 2.0 x 108 yr
0.83 24x10° C 0. Ne 2.0x 10° yr
1.6 7.2x 105 Ne 0. Mg 0.7 yr

1.9 6.7x10° O.Mg Si.§ 2.6yt

3.3 43%x 107 S S  Fe.Ni 18d

The table below (from Hirschi et al. 2004 AA 425, 649) gives the lifetimes of
the different fusion phases for a range of masses. It also shows the mass of the
different chemical elements at the end of the stable Si-fusion. The last two
lines give the total mass of Si and Fe when the core collapses. These are
slightly higher than at the end of the Si-fusion.

Notice the effect of stellar rotation on the evolution. Fast rotating stars have
more mixing and higher mass loss rate.
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Initial model properties
Mzams 15 15 20 20 25 25 40 40 60 60
VzaMs 0 300 0 300 0 300 0 300 0 300
Lifetime of burning stages
TH L13(7)  143(7) 795(6) 1.01(7) 655(6) 7.97(6) 456(6) 553(6) 3.62(6) 4.30(6)
The 1.34(6) 1.13(6) 875(5) 7.98(5) 6.85(5) 6.20(5) 483(5) 424(5) 385(5) 3.71(5
Tc 392(3)  1.56(3) 9.56(2) 2.82(2) 3.17(2) 1.73(2) 417(1) 853(1) 5.19(1)  5.32(1)
T 3.08 0.359 0.193  8.81(-2) 0.882 0441 445(-2) 674(=2) 4.04(-2) 4.15(-2)
To 2.43 0.957 0.476 0.132 0.318 0.244 598 (-2) 0.176 5.71(=2) 7.74(-2)
Tg; 2.14(=2) 874(=3) 9.52(=3) 273(3) 3.34(3) 215(3) 193(=3) 208(3) 195(3) 242(3)
End of central silicon burning
Myia 13.232 10.316 15.694 8.763 16.002 10.042 13.967 12.646 14.524 14.574
MP 4.211 5.677 6.265 8.654 8.498 10.042 13.967 12.646 14.524 14.574
M 2.441 3.756 4.134 6.590 6.272 8.630 12.699 11.989 13.891 13.955
M2 2.302 3.325 3.840 5.864 5.834 7.339 10.763 9.453 11411 11.506
MY 1.561 2.036 1.622 2.245 1.986 2.345 2.594 2212 2.580 2.448
M2 1.105 1.290 1.110 1.266 1.271 1.407 1.464 1.284 1.458 1.409
Last model
MY 1.842 2.050 2.002 2.244 2.577 2.894 2.595 2.868 2.580 2.448
M2 1.514 1.300 1.752 1.260 1.985 1.405 2.586 1.286 2.440 1.409

Fig 27.1 shows the evolution of the ¢

enters of stars in the T- p. diagram for

stars of 15, 25 and 35 Msun. We have argued in Sect 10.11 that the core is

expected to evolve as T; ~ M. %® p,
The figure shows a slower increase:

1/3

i.e. pc%%* . This is due to the fact that the

mass of the core for every next fusion phase is smaller than the previous one.

The figure shows that the star settles i

nto a new equilibrium (little wiggles)

every time the next fusion phase occurs. In terms of time, the evolution of the

core in this diagram speeds up enorm

ously when it reaches higher

temperatures. For instance, see the times given in the table for a 15 Mg, star.
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Fig 27.2 gives the corresponding Kippenhahn diagram of the inner 15Mg as a
function of time until collapse. (During all these phases the star is a red
supergiant with L ~ 5x10* Le.) The hatched regions are the convective zones.
Most of these are the core-fusion regions, and fusion shells with the reactions
indicated. Notice the extremely short duration of the phases.

Fig 27.2
The Kippenhahn
Diagram of the
late evolution
phases of a star
of 15 Msun,
expressed as a
el SR o function of time
' ' until core-

Elsmg | 7 ~_ collapse.
‘ ¢ (Fig OP 12.7, from
Woosley et al.

2002)
He -C, 0

S

Ne 1
C-—0.Ne 0—+S|. S Sl—="F¢" 3
-— - - i - - - - a - - - L - - - _

27.2 Pre-Supernovae

Just before a massive star ends as a supernova, it has an onion-skin chemical
structure with successive layers of fusion products.

Fig 27.3

The onion skin model of a massive
e star just before the supernova

collapse. (OP Fig 15.1)
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The masses of the different cores during the various fusion phases are given in
the table below, for stars of different initial masses, and initial rotation,

Vini =0, and Vini = 300 km/s. (From Hirschi et al. 2004)

M; is the initial mass, Mysing is the final mass before the star explodes,

M;i — Msing is the mass that is lost during the evolution.

M, is the mass of the Helium core after the H-fusion phase,

Mco is the mass of the CO core after the He-fusion phase,

Mk is the mass of the Fe core after the Si-fusion phase.

Mremn IS the remnant mass after the SN has exploded.

M /M Vi [km s ') Miinal My Mco My M emn
9 0 LRGSR 2,185 0.920 - 0,920
9 300 8.375 2,547 413 1,239
12 0 11.524 1410 1.803 - 1.342
12 300 10,199 3877 2,258 1.462
15 0 13.232 4.211 2441 1.561 1.510
15 300 = 10.316 5677 3.756 2.036 1.849
20 0 15.694 6.265 4,134 1.622 1.945
20 300 8.763 B.654 6.590 2.245 2.566
25 0 16,002 8. 498 6.272 1.986 2486
25 A00 10.042 10.042 8.630 2.345 3058
40 0 13.967 13.967 12,699 2.594 4.021
40 JO0A 12.646 12.646 11,989 2.212 3853
60 0 14,524 14.524 13,891 2.580 4,303
60 100A 14.574 14.574 13,955 2,448 4,323
85 0 17.236 17.236 16.564 5118
85 100A 12314 12314 11.666 . 1776
120 0 16,254 16,254 15.591 4819
120 JOOA 11.270 11.270 10,663 3539

Stars with M; < 25 Mgy, (depending on viy;) still have substantial amount of
H when they explode. They end their life as Red Supergiants and produce
H-rich SNe.

Stars with M; > 25 Mg, (depending on Vini) have Myina = My . So all of
the H has been lost. They end their life without H. These are the WR stars

that produce H-poor SNe.
Notice that the remnant mass of stars of M>40 Mg, is about the mass

of the Fe-core plus the Si-shell. For M < 20 Mgy, the remnant
mainly contains the mass of the Fe-core. The mass of the Si-shell is ejected.
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28

28.1

28.2

Supernovae

Core Collapse

After the star has developed an Fe-core it runs out of nuclear energy. At that
time the core has a temperature of T ~4 10° K and a density of p > 10° g/lcm®
(see Fig 27.1) so the core is relativistic degenerate (see Fig 5.5, left),

with M > Mchandra ~ 1.3 Mg for stars of M; > 12 Mg (see Table in section 27.2).
This cannot be stable so the core collapses.

Stars of 8 < M < 12 Mg do not reach Si-fusion so they do not produce an Fe-
core. They can still go into core-collapse when at high-densities the electrons
are captured by heavy nuclei. This reduces the pressure produced by electrons
and the core collapses.

As the core collapses its temperature becomes so high, T > 10'° K that the
photons are energetic enough to break up heavy nuclei into lighter ones

*SFe +y — 13 *He+4n

Since this is an endothermic reaction that costs energy, rather than produces it,
the core quickly cools and the collapse accelerates.

The SN Explosion

As the core collapses, and eventually is halted when it is a neutron star, the
envelope is ejected in the SN-explosion. There are several processes that occur
at the same time, but the three major effects for the ejection of the outer layers
are:

a. Bouncing shock at the surface of the neutron star. The matter that falls onto
the very compact neutron star experiences a shock. The bounce of this
shock is so strong and so energetic that it runs outward against the infalling
material and eventually ejects it.

b. During the infall the temperature is so high that the photons create neutrinos
Photo-neutrino production y +e~ - e~ + v, + 7,
Pair-annihilation y+y >0, +7,
In the layers just above the neutron star, the density is so high (p ~ 101
g/cm®) that the neutrinos can be captured by the infalling gas. This is the
case in the layers where the optical depth for neutrinos is ty > 1.
(The layer where 1, ~ 1 is called the neutrino photosphere.)
The capture of the neutrinos by photons, neutrons and heavier particles just
above the neutrino photosphere suddenly heats up the infalling layers so
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strongly that the infall stops and is converted into an explosion with mass
ejection.

c. The fusion in the infalling fusion shells suddenly becomes very efficient,
due to the increase in T and p. This creates a large amount of energy, that
heats the infalling layers and produce so much gas-pressure that the
explode.

These mechanisms work together to eject the layers outside the neutron star. If
the neutron star captures more mass than about 2 Mo, it collapses into a black
hole.

Energetics of Supernovae

The energy released during the core collapse when its radius decreases from
Rci tO Rcf iS

GMZ | GM? GM?
E x4~ +~ 3x%x10% er
collapse Rei Ref Ref g

Assuming that the core collapses froma WD (M. ~ 1.4 Mo and R¢ ~ Ryg ~ 10*
km) to a neutron star with Res ~ 20 km we find that E ~ 3x10° ergs.

The potential energy necessary to expel the envelope with mass

Menw =M — M is

pot M, Gm M, Gm GM? 52
= — — ~ ~ 3 X
Eeny fMC —dm < fMC P dm ™ 3 X 10°“erg

Where we have used M > M. ~ 10 Mg and Reny >> Rei = Ryg = 10% km. This is a
severe overestimate because we used Reny ~ Rci. A more realistic model for the

envelope gives EX% ~ 1059 erg.
The kinetic energy of the envelope is

Ekin — %Mem,Vz ~ 6 % 10%%erg if Meny ~ 6 Mo and V ~ 10* km/s.

The peak luminosity of the SN is typically 108 to 10° Lo during about 60 days.
So the radiative energy of the SN is about E ~ 10*® — 10* erg.

We see that Egr(l)\t + Egrilr\ll + Erad < Ecollapse

Only a small fraction of the energy released in the core collapse is used for
ejecting the envelope and emitting light.
Most of the energy comes out in the form of neutrinos!

188



Astronomy 531 University of Washington Spring 2014

28.4  Types of Supernovae

The types of SN and their origin is shown in the figure below.
There are four major types
Type | =no H in spectrum
la = collapsing WD (from low mass binary system)
Ib = iron core collapse no H (from WR star)
Ic = iron core collapse , no H, no He (from WC star)
Type 11 =iron core collapse, with H (from Red Supergiant)

Fig 28.1
Different types of SN and
(S f ) their progenitors (M fig
n N n 28.9)

| yateny
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28.5 The Remnants of Stellar Evolution

Fig 28.2 shows the types of SN and remnants as a function of M; for Z = 0.02.

The upper curve shows the mass after He-core fusion.

The mass of H-rich material expelled (light grey)

M, is the mass of He that is expelled (middle grey)

- Mg, is the mass of C and O that is expelled (dark grey)

The mass of the remnants (black)
The fate of stars with M; > 50 Mg is uncertain. The final fate of stars also

depends not only on their initial mass but also on metallicity and initial rotation
velocity.
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r . ——y : Fig 28.2

The remnants of
stellar evolution.
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29.  Stellar Yields of Single Stars.

Stellar yields describe the amount of gas and its composition that is returned to
the ISM during the stellar life cycle. Yields can be calculated for each stellar
mass. The total yield is the yield per star, multiplied by the relative number of
the stars, i.e. by the Stellar Initial Mass Function.

Fig 29.1 shows the stellar yields for massive stars in the range of 8 to 120 M.
It shows how much mass is ejected at each phase. (O=O-star, BA=A or B

supergiant, RSG=red supergiant)
190~ T T

Fig. 29.1

The fraction of the matter that is
returned to the ISM during various
phases, as a function of M;.

The narrow strip at the top is the

mass that remains in the remnant.
(ISW Fig 12.9)

Fig 29.2 shows the total yield, i.e. the same as above but now weighted with

a Salpeter IMF: N(M) ~ M2

Mass Return Rate (M/yr/kpe?/dex)
.
Ll

L

Initial Mass (My)

Fig 29.2

The total yield=

the mass that is returned to the
ISM by stellar evolution,
weighted with the number of
stars from the IMF

N(M) ~M %%

(ISW Fig 12.10)
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The effective yields is the mass fraction of the new heavy elements ejected
into the ISM by winds and SN from massive stars.
Fig 29.3 shows the effective yields of massive stars separated by chemical

elements.
a5 ST — T N Fig29.3
™ 1
| smuss vewos | The effective
yields: the mass
o vewr moenrs | fraction of new

He and new
heavy elements
ejected as a
function of the
stellar mass. The
contributions by
winds and SN

are separated.
(Fig from Chiosi &
Maeder 1986,
ARAA 24, 329).

Notice:

He: - the most massive stars (20 — 120 Mo) eject He by their winds.
- the lower mass stars eject most of their He in SNe
- although the lower mass stars (M < 10 Mo) eject a smaller fraction of
their mass in the form of He than the massive stars. The overwhelming
number of low mass stars implies that most of the enrichment of He
comes from low mass stars.

C: - the most massive stars (M > 60 Mp) eject C in their winds (as WC stars)
- the stars in the range of 10 — 120 Mg, also eject a large fraction of their
mass in the form of C by SNe.
- the low mass stars (M < 8 Mp) also eject C in the form of C-rich AGB
winds. The overwhelming number of low mass stars implies that most
of the C-enrichment is these winds of low mass stars.

O: - most of the O-enrichment is by SN of massive stars (M > 10 Mg)
- the most massive stars (M > 40 M) also lose O in the form of winds
from WC stars.

Fe-Si: the enrichment of these elements is due to SN from massive stars (M >
15 M)
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Binary evolution (see O.Pols 2014: Binary Evolution)

Potential surfaces of binaries

In this last chapter we will briefly consider the evolution of interacting binary
stars. These are stars whose evolution is affected by the close presence of a
companion.

Fig. 30.1 shows the equipotential surfaces of a binary system with a mass ratio
of M1/M2:2.

30.2

O III1T]IUAIT]TITT]ITT1II.

- FNWEEE R
1 )

NI N .

2 1 0

Xa

Fig 30.1 Left: the equipotential surfaces of a binary system with M1/M,=2, as
seen from the orbital pole. The thick inner 8-shaped figure is the Rochelobe.
Right: the depth of the potential wells of this binary system as a function of
distance x/a from the center of gravity, where a is the separation. Star 1 is the
heavier one, so it is closer to the zero point and the potential well is twice as
deep as for M,. The location of the Lagrange points Lj, L, and L3 are
indicated. The gray scales indicate three possible stable configurations: dark
gray = detached systems, light gray = semi-detached systems where one of the
components just fills its Rochelobe. Light gray = contact systems. (Pols 2014,
figs 14.1 and 14.2)

w

Matter outside L, and L3 is still bound to the binary, but it cannot maintain
co-rotation.

Contact Phases
Binaries start to interact when the size of one of the two components reaches or

overflows the Roche lobe. This depends on their separation and their radius.
The radius of a star increases during several evolutionary phases:
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A. during the main sequence phase

B. during the H-shell fusion phase when the star expands:
(evolution towards the RGB for low mass stars and
towards the RSG for massive stars)

C. during the rise along the Hayashi line with fully convective envelope
(AGB phase for low mass stars, increasing L for RSG)

The evolution of interacting binaries is classified in three cases accordingly.:
Case A: when the first contact occurs during the MS phase
Case B: when the first contact occurs during H-shell fusion
Case C: when the first contact occurs when the star is on the Hayashi track.

LA AL L LA L WL L L L WL L LY LA LA L L L L L L L L

— —~/) / (o
5 10 S/ § 2
o / e
— 1] i - / fb |
& 5| 4.0 = /i S 8 | B
- = - v/ I
5 1 E [ -]
16 A SORY . el o .
( o ad / B
0 \ - e A
PO N ol N G AT AT S G AT ‘lll" TR ST BT () —"“:“""" I -| '.A |‘ ‘| ll Il ll I”"”;”‘ || |”;”|.”| Al'lv | .| L
4.5 4.0 3.5 0 1000 2000 3000
log Teff (K) age (109 yr)
L e B B LA I A I B
3 N 1O Maun a 3 - 16 Maun 2 “("'
R | “ 1 I .L.U.“\. o
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e
5 2 | 3 5 2F B
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% E e T O - T - .
= rad ’ B ] =
- ; A - ]
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Fig 30.2 The HRD with the evolution tracks of stars between 1 and 25 Mg, and the radius
evolution of three stars of 1.6, 4.0 and 16 My,. The ranges of radii for evolution in case A
(MS), base B (H-shell fusion) and case C (climbing the Hayashi track) are indicated by
dotted lines. The dashed lines indicate the separation between the times when the outer
envelope is radiative and when it is convective. (Fig 14.3 of O.Pols 2014).
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The larger the increase in radius at some phase, the more likely it is that the

binary reaches contact at that phase.

Changes in period and separation during mass transfer

When one of the binary stars reaches its Rochelobe, matter may overflow to its
companion. In the early lifetime of binaries the more massive star is the one to
reach Rochelobe overflow first, because it evolves on a shorter timescale. In
that case the donor (d) is the more massive star and the acretor (a) is the less
massive one. However in later phases the less massive star might be the donor
that transfers mass to the more massive one. For instance, in the case of a low
mass red giant with a more massive neutron star companion.

Mass transfer can be conservative (no mass is lost) or non-conservative (mass
is lost from the system: not all mass lost by the donor reaches the companion).

Mass transfer changes the period and the separation of a binary system. For
conservative mass transfer of a binaries in a circular orbits the change in
separation is (Pols sect 16.1.1).

da/dt -9 (ﬂ_ 1) dMg/dt
a Mg Mg

This shows that the separation reaches a minimum if Myg=M,, i.e. when the
masses become equal. The changes in separation and periods due to
conservative mass transfer are

a; Mg " Mg P Mg " M,

where the subscript i indicates the initial value.
Stable and run-away mass transfer.

Mass transfer occurs when one of the two components fills its Rochelobe.
When mass is transferred from a donor to an accretor three properties have to
be considered: the change in radius of the donor, the change in separation and
in Rochelobe size, the change in radius of the accretor.

Stable mass transfer occurs when the radius of the donor decreases due to
mass transfer faster than the size of the Rochelobe. In this case the transfer of
an amount of mass leads to a shrinking of the donor radius and it moves back
within its Rochelobe. Stellar evolution of the donor will then let the radius
expand again until it fills its Rochelobe and again transfers mass. This results
in stable mass transfer on the timescale of the evolution of the donor. This is
the case for case A transfer.
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Run-away mass transfer = dynamically unstable mass transfer occurs
when the transfer of the mass results in a shrinking of the Rochelobe whereas
the donor radius does not shrink fast enough or even keeps expanding . In that
case the mass transfer is so fast that the donor is out of hydrostatic equilibrium.
Run-away mass loss occurs in stars with deep convection zones, i.e if the
donor is on the Hayashi track : this happens in case C mass transfer.

The reason that interacting binaries on the Hayashi track will suffer
dynamically unstable mass loss is because their luminosity is set by the core
mass and their Tef IS almost constant. This mean that their radius is
independent of the mass of envelope. So as an AGB star transfers mass to a
lower mass companion, their separation decreases which decreases the
Rochelobe volume, so more of the envelope mass of the ABG star will be
transferred. etc. This will end when the star has lost almost all of its envelope
and contracts on its way to become a WD, or a WR-star if it is massive.

Unstable mass transfer on thermal timescale is in between these two
extremes. In that case the donor is out of thermal equilibrium (energy
balance), but the mass transfer is slow enough for the donor to remain in
hydrostatic equilibrium. (The time scale for mass transfer is slower than the
dynamical timescale). Readjustment to thermal equilibrium occurs on a Kelvin
Helmholtz timescale, so in this case the mass transfer is self-reguating and the
timescale is the Kelvin-Helmholtz timescale. This happens in stars with
radiative envelopes, i.e. in case B transfer of massive stars that are expanding
after the MS but do not yet have reached the Hayashi track.

Case A transfer = Algol systems.

We discuss one typical example of case A mass transfer: an Algol binary

Fig 30.3
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log (L / Lsun )
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Between point B and C (the star is still on the MS) the primary transfers mass
to the secondary. The primary loses mass and gets fainter. At C it has lost 4
Mgun and so M;=6 Msun and M,=12.9 My,,. After C it evolves more or less as a
normal star of lower mass (HB and AGB). The secondary gains mass between
B and C while it is still on the MS and so it moves up along the MS.

When the mass of such a star exceeds that of the turn-off point of a cluster, it is
a blue straggler.

Case B transfer = massive interacting binaries

When massive stars cross the Hertzsprung gap, i.e. when they move in the
HRD from the MS to the Hayashi track, their radius may reach the Rochelobe
and the star transfers mass. In this phase the expansion of the donor is on the
Kelvin —Helmholtz timescale and so as the orbit shrinks, the mass transfer rate
is much higher than in case A transfer.

Fig 30.4
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The transfer starts at point B, when the primary is crossing the Hertzprung gap
and continues to point D. The low L at point C corresponds to the maximum
transfer rate because the star is out of thermal equilibrium. The star has the
tendency to shrink due to mass loss (because the envelope is still mainly in
radiative equilibrium) but at the same time its internal evolution forces it to
expand. A considerable fraction of the energy from the H-shell fusion is used
for the continuing expansion of the envelope.

The mass transfer keeps going until the stars have reached equal mass and the
separation reaches its minimum value. However as the donor keeps expanding
the mass transfer continues on the Kelvin-Helmholtz timescale of the donor.
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At point D Helium is ignited in the core and so the star makes a blue loop in
the HRD. The accretor is still on the MS and becomes more massive and more

luminous.

Case C = Unstable mass loss

If mass transfer occurs when the donor is on the Hayashi line, the mass transfer
will be unstable. This will lead to a rapid shrinking of the orbital separation.
The result will be a common-envelope star.

When stars are on the Hayashi line, their radius can reach such high values
that case-C mass transfer may occur for a large range of initial periods and
separations. Therefore, common envelope evolution is not a rare fate of

binaries.

The evolution of high mass X-binaries

The evolution of a high mass binary system, leading to the formation of a high
mass X-binary, like LMC-X3, is shown in Fig. 30.5
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The evolution of a close binary of 71.9 + 8.6 My, with a period of 132.9 days.

Notice the different sizes of the first (left) and later (right) phases. The disk like structure
indicates that spin-up has occurred, and that the secondary cannot accept the mass lost by
the primary. It is lost in a wind on goes into a circum-binary disk.
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a: initial configuration. b: the primary fills its Rochelobe as a red supergiant which
results in run-away mass loss. The star goes through a common envelope phase with
spiral-in.

c: at the end of the common envelope phase, the primary has lost almost half of its mass,
from 63.8 to 31.6 My, and the orbit has been shrinking from about 500 Ry, (P=164.3
days) to less than 10 Ry, (P=0.5 days)! e: the primary explodes as a supernova, leaving a
remnant black hole of 13.6 Msun. f : the secondary fills its Rochelobe and transfers mass
to the BH via an accretion disk. (Pols 2014, Fig 20.2)

30.9 The formation of low mass X-binaries.

Fig. 30.6 shows the evolution of system of system of 10 + 1 My, with a period of
300 days, that leads to the formation of a low mass X-binary system.
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Fig 30.6 Notice the different size scales between the first (left) and the later (right) phases.
b: The primary fills its Rochelobe when it has a He core of 2.5 Mg, on the red giant
branch. c: the primary has lost 8.5 Mg, and the friction has lead to a significant spiral-in
of the orbit, from about 300 Ry, to about 3 Rg,n. The primary is now a Helium star.

d: the Helium star explodes as a SN, leaving behind a neutron star of 1.35 Mg, and a main
sequence star. e: Due to tidal interaction, the orbit circularizes resulting in a 1 Mg, MS
star and a neutron star in a tight orbit. (Pols 2014, fig 20.3)
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THE END

| hope you enjoyed this class
(I did) and that what you
learned is useful for you.

Good luck with your research and your
career in astronomy!

Henny Lamers
Seattle June 4, 2014
h.;.g.l.m.lamers@uu.nl

PS1: If you have questions, contact me by email

PS2: in case you wondered: H.J.G.L.M. =
Hermanus Johannes Gerardus Lambertus Maria
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Appendix A

Physical and Astronomical
Constants

Listed below are some useful physical and astronomical constants derived
from various sources. The prime reference for the physical constants is
Cohen, E.R., and Taylor, B.N. 1987, Rev. Mod. Phys., 59, 1121 (who use
MKS units). In some cases we have rounded the values.

speed of light in vacuum: ¢ = 299792458 x 10" cm 5!

Newtonian constant of gravitation: G = 6.6726 x 1075 g~! cm® 52
Planck’s constant: h = 2rh = 6.6260755 x 107" erg s

elementary charge: e = 4.8032068 x 10~ e.s.u.

electron mass: m, = 9.1093898 x 10~%% g, 5.4858 x 10~* amu,
0.5109991 MeV ¢—2

proton mass: m, = 1.6726231 x 10~* g, 1.00727647 amu,
938.27231 MeV ¢2

neutron mass: m, = 1.6749286 x 10~** g, 1.0086649 amn,
939.56563 MeV c—2

Avogadro’s constant: N, = 6.0221367 x 10** mole~!

Boltzmann's constant: k = 1.380658 x 10~'% erg K~!,
8.617386 x 1075 eV K~}

gas constant: R, = Nyk = 8.314511 x 107 erg K~ mole™!

Stefan-Boltzmann constant: ¢ = 5.67051 x 1075 erg em=2 K4 5~!
radiation density constant: a = 40/c = 7.56591 x 10~'% erg em~3 K4
eV to erg conversion: 1 eV = 1.60217733 x 1072 erg

amu to gram conversion: 1 amu = 1.6605402 x 10-24 g

solar luminosity: L. = (3.847 £ 0.003) x 10*® erg s~!

solar mass: Mg = (1.9891 + 0.0004) x 10% g

solar radius: R = 6.96 x 10'° cm

solar effective temperature: 7,4(®) = 5780 K

parsec (pc): 1 pc = 3.086 x 10'® cm

astronomical unit (AU): 1 AU = 1.496 x 10" cm
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Appendix B1

Main-Sequence Stars (Luminosity Class V)

Sp. T,
Type (K) L/iLy R/Rg MMy My 8C My vU-8 B-V
05 42000 499000 134 60 -9.51 -440 -5.1 =119 ~033
06 39500 324000 122 37 -904 -393 -5.1 =117 -0.33
o7 37500 216000 1.0 — -860 -368 ~-49 ~11S -032
O8 35800 147000 10.0 23 -B.18 -354 -46 -114 032
BO 30000 32500 6.7 17.5 -654 =316 -34 —108 -030
Bl 25400 9950 52 - -526 =270 =26 095 -0.26
B2 20900 2920 , 4.1 — -392 -235 -16 -084 -0.24
B3 18800 1580 38 7.6 -326 -194 -13 -0.71 -0.20
BS 15200 480 3.2 59 -19% —146 05 -0.58 -0.17
B6 13700 272 29 — =135 -121 -0l =050 ~0.15
B7 12500 160 27 - =077 -1.02 403 -0.43 -0.13
B8 11400 96.7 2.5 i -022 -080 4+06. -0.34 =0.11
BY 10500 60.7 23 — +028 051 408 -020 007
AO 9800 394 22 29 +0.75 ~030 411 -0.02 -0.02
Al 9400 30.3 2.1 — +1.04 =023 413 +002 +0.01
A2 9020 236 2.0 - +1.31 =020 +15 +005 +0.05
AS 8190 12.3 1.8 2.0 +2.02 =015 +22 +0.10 +0.15
A8 7600 7.13 1.5 - +261 <010 +27 +0.09 4025
FO 7300 5.21 1.4 1.6 +295 —-0.09 +30 4003 4030
F2 7050 3.89 1.3 — +327 011 +34 4000 4035
F5 6650 2.56 1.2 1.4 +372 014 439 <002 4044
2] 6250 1.68 1.1 — +4.18  =0.16 443 +0.02 +0.52
Sp. T,
Type (K) L/Lg R/Ra M/Mg My BC My v-8 B-V
GO 5940 1.25 1.06 105 +450 =018 +47 +006 +0.58
G2 5790 1.07 1.03 ot +4.66 -020 +49 4012 4063
Sun® 5777 1.00 1.00 100 +474 008 +482 +0.195 +0.65
G8 5310 0.656 0.96 —_— +520 040 +56 +030 +4+0.74
KO 5156 0.552 0.93 079 4539 -031 457 4045 4081
Kl 4990 0.461 0.91 - +558 -037 460 +054 +0.386
K3 4690 0318 0.86 — +598 ~050 465 +080 4096
K4 4540 0.263 0.83 — +6.19 -055 +6.7 — +1.05
K5 4410 0.216 0.80 067 +640 -072 +7.1 +098  +1.15
K7 4150 0.145 0.74 — +684 -1.01 478 4121 +1.33
MO 3840 0.077 0.63 051 +752 -138 +89 +122 +140
Mi 3660 0.050 0.56 —_ +799 =162 +96 +1.21 +1.46
M2 3520 0.032 0.48 040 4847 189 4104 #1188  +1.49
M3 3400 0.020 0.41 —_ +897 =215 +I1L1 +L16  +1.51
M4 329 0.013 0.35 - +949 -238 4119 +L15  +1.54
M5 3170 00076 0.29 021  +101 =273 +128 4124  +1.64
M6 3030 0.0044 024 — +106 =321 +138 4132 4173
M7 2860 00025 020 — +11.3 =346 +147 +1.40  +1.80
“Values adopted in this text,

202



Astronomy 531

Appendix B2

University of Washington

Appendix G Stellar Data

Giant Stars (Luminosity Class I1I)

Sp. T.

Type (XK) L/Lg R/Rg M/Mg Myy BC My U-B B-V
05 39400 741000 185 —  -994 -405 -59 -1.18 —032
06 37800 519000 168 —  -955 -380 -57 —1.17 -032
07 36500 375000 154 —  -920 -358 -56 -1.14 -032
08 35000 277000 143 — 887 =339 -55 113 -03]
BO 20200 84700 114 20 -7.58 -288 -47 -108 -0.29
Bl 24500 32200 100 — @ -653 -243 -41 -097 -026
B2 20200 11100 86 — =538 -202 -34 -091 -024
B3 18300 6400 80 — -478 —160 -32 -074 -020
BS 15100 2080 6.7 7 -35 -130 -23 -058 -0.17
B6 13800 1200 61 — =29 -113 -18 -051 -0.15
B7 12700 710 55 — =238 -097 -14 -044 -0.13
BS 11700 425 50 —  -183 -08 -10 -037 -0.11
B9 10900 263 45 —  ~131 -071 -06 -020 -0.07
A0 10200 169 4.1 4 —083 -042 -04 —007 -003
Al 9820 129 39 — -053 —-029 -02 4007 +001
A2 9460 100 317 — =026 =020 -0.1 4006 +0.05
AS 8550 52 33 — 4044 014 406 +0.11  +0.15
A8 7830 13 31— 4095 -0.10 +1.0 +40.10 +0.25
FO 7400 27 32 — #LI7 =011 +13 +008 4030
F2 7000 24 33 — 4131 -0.01 414 +008 +0.35
FS 6410 22 38— 4137 014 +15 +009 +043
GO 5470 29 6.0 10 +0L10 —020 +13 +021 4065
G2 5300 31 6.7 — 4100 =027 +13 4039 4077
G8 4800 44 96 —  +063 042 +10 +070 +094
KO 4660 50 109 1.1 +048 -050 +1.0 +084 +1.00
Kl 4510 S8 125 — 4032 -055 +09 <4101 +1.07
K3 4260 9 164 — 001 =076 +08 +1.39 +1.27
K4 4150 93 187 — =018 -094 408 —  41.38
KS 4050 10 214 1.2 =036 =102 +07 +181 +1.50
K7 3870 154 276 — =073 =117 +04 +183 +1.53
MO 369 256 393 1.2 -128 —125 +00 +187 +1.56
M1 3600 355 486 — @ —164 —144 —02 +188 +1.58
M2 3540 483 585 13 =197 —-162 -04 +189 +1.60
M3 3480 <= 643 697 — @ —-228 187 -04 +188 4161
M4 3440 B4l 820 — =257 =222 04 4173 +1.62
M5 3380 1100 967 — =286 -248 -04 +1.58 +1.63
M6 3330 1470 116 — =318 =273 -04 +116 +1.52
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Supergiant Stars (Luminosity Class Approximately Iab)

Sp. T,

Type (K) L/iLg R/Rg M/Mo M BC My U-B B-V
05 40900 1140000 212 70 -1040 -387 -65 117 -031
06 38500 998000 24 40 -1026 =374 —65 -1.16 —031
07 36200 877000 228 —  =1012 -348 -66 -1.14 -03]
OB 34000 769000 253 28 -998 -335 -66 113 -029
BO 26200 429000 317 25 -934 249 -69 -106 -0.23
Bl 21400 261000 373 — -880 —187 -69 -100 -0.19
B2 17600 157000 28 — -825 ~158 -67 -094 -0.17
B3 16000 123000 458  — ~799 -126 -67 -083 -0.13
BS 13600 79100 Si.1 20 ~751 -095 -66 -072 ~-0.10
B6 12600 65200 538 — -730 -088 -—64 -069 008
B7 11800 54800 564  — -7.11 078 —-63 -064 —0.05
B8 11100 47200 589 — -695 —066 -63 05 —0.03
B9 10500 41600 ‘618 — -6.81 052 -63 —050 -0.02
AD 9980 37500 64.9 16 -670 041 -63 -038 -00I
Al 9660 35400 673 - ~663 =032 -63 -029 +0.02
A2 9380 33700 69.7 — -6.58 -028 -63 -025 4003
AS 8610 30500 786 13 ~647 013 -63 007 +0.09
A8 7910 29100 91.1 — ~642 -003 -64 4011 +0.14
FO 7460 28800 102 12 -641 =001 —64 +0.15 +0.17
F2 7030 28700 114 —_ ~641 000 -64 4018 +0.23
FS 6370 29100 140 10 -642 -003 -64 4027 +0.32
F8 5750 29700 174 — —644 —009 —64 4041 +0.56
GO 5370 30300 202 10 —647 -015 -63 4052 +0.76
G2 5190 30800 218 - ~648 -021 -63 4063 +0.87
G8 4700 32400 272 - ~6.54 ~042 ~6.1 4107 4115
KO 4550 33100 293 13 -6.56 -050 6.1 +1.17 41.24
Kl 4430 34000 314 - ~659 -056 ~60 +128 +1.30
K3 4190 36100 362 - —6.66 —075 =59 +1.60 +1.46
K4 4090 37500 386 - -670 -090 -58 — 4153
KS 3990 39200 415 13 -674 —101 -57 +180 4160
K7 3830 43200 473 — —685 —120 -56 +184 +1.63
MO 3620 51900 579 13 -705 =129 58 +190 +1.67
Mi 349 60300 672 - -721 -138 -58 +190 +1.69
M2 3370 * 72100 791 19 ~741 162 ~58 4195 4171
M3 3210 89500 967 - ~764 =213 =55 4195 41.69
M4 3060 117000 1220 —_ ~-793 =275 =52 +200 +1.76
MS 2880 165000 1640 24 ~831 -347 -48 +160 +1.80
M6 2710 264000 2340 - -882 -390 -49 — —
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ZTEROC-AGE MNAINSEQuUENCE MODELS
Stellar parameters on the zero-age sequence for models of composition X

Y =030and Z = 0,02 [120, 513)

University of Washington

M/M_. logL/L. logTy logg R/R. G o logp, logT,
120 6.252 4727 4126 15683 0867 0.0438 0.171 7.638
85 6006 4705 4134 13075 0822 0.0536 0233  7.621
60 5728 40683 4173 10506 0746 0.0729 0332 7611
40 5373 4640 4180 8510 0.664 0.0914 0429 7.589
25 4897 4579 4208 6515 0555 01273 0577  7.564
20 4650 4544 4218 5760 0508 0.1474 0653  7.550
15 4303 4492 4232 4908 0446 0.1787 0.762 7.529
12 4013 4448 4249 4305 0408 02118 0858 7.513
9 3617 4383 4260 3681 0367 02542 0988 7488
7 3257 4321 4263 3235 0342 02012 1.104 7464
s 2740 4235 4290 2651 0314 03780 1.290 7433
4 2385 4173 43000 2344 0294 04375 1412 7410
3 1909 4088 4311 2004 0262 0.5250 1.570  7.377
2.50 1600 4031 4313 1826 0235 05783 1669 7355
2.00 1.209 3958 4315 1629 0.208 0.6516 1780  7.323
1.70 0916 3901 4309 1512  0.186 0.6927 1.851 7.295
1.50 0676 3852 4299 1437 0.173 07119 1.881 7.265
1.25 0.325 3808 4395 1175 0031 1085 1928 7.213
1.00 ~0.163 3751 4558 0871 0000 2133 1891 7134
(.90 ~0.313 3720 4574 0811 0.000 2378 1917 7.108
(.80 ~0.554 3694 4624 0722 0.000 2996  1.905 7.070
0.70 ~0821 3654 4673 0638 000 3793 1.893 7.030
(.60 ~1.090 3623 4751 0540 0.000 5367 1880 6.990
0.50 ~1.370 3595 4840 0445 0.000 7986 1869 6953
0.40 -1.640 3572 4921 0363 0.000 11.817 188§ 6.926

Ge* m‘,..u.. In CChYeChve cOrR

MAiv Seauence Lise Times

MAtoen foos

Physics, FornaTIOn Ane

Spring 2014

EVOLuTon oF ReTar me Drass

and an overshooting of 0.2 Hp [513]

Mass (M) mulyr) Mass (M) tu(yn)

120 2561 % 10" 4 1.647 % 10°

85 2823x10° 3 3.525 < 10°

60 3447 %10 25 5.849 x 108

40 4303x 100 2 1116 % 107

25 6408 x 10° 1.7 1.827 x 10°

20 8141 x10" 15 2,695 x 10”

15 1158 x 107 1.25 3.948 x 10°

12 1.600 x 107 1.00 9.845 % 10"

9 2.639x 107 090 1.550 x 10'°
7 4319107 080 2.503 x 10'°
5 9.446 x 107

The MS-lifetimes 1y as a function of mass for X = 0.68 and Z = 0.02 with mass Joss
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Table 2.4. A modedl of the present Sun (Z+n means Zx 10")
mimg g P(Pa] T(K] elkg/m'l  L/Lg X u
1.0000 1.0000 1.16+04 5.778+3 3,03-4 1.000 .727 1.251
1.0000 .9999 2.22+04 B8.871+3 3.71-4 1.000 .727 1.234
1.0000 .9996 4.23+04 1.107+4 5.34-4 1.000 .727 1.162
1.0000 .0993 8.05+04 1.251+4 B8.48-4 1.000 .727 1.093
1.0000 .9990 1.53+05 1.378+44 1.39-3 1.000 .727 1.035
1.0000 .0986 2.92+05 1.506+4 2.32-3 1.000 .727 .985
1.0000 .9981 5.57+05 1.642+4 3.88-3 1.000 .727 .942
1.0000 .9976 1.06+06 1.793+4 6.52-3 1.000 .727 .903
1.0000 .9970 2.02+06 1.966+4 1.09-2 1.000 .727 .867
1.0000 .9064 3.85+06 2.167+4 1.83-2 1.000 .727 .833
1.0000 .9056 7.34+06 2.408+4 3.03-2 1.000 .727 .800
1.0000 .9947 1.40+07 2.702+4 4.98-2 1.000 .727 .769
1.0000 .9937 2.67+07 3.067+4 8.10-2 1.000 .727 .740
1.0000 ,9925 5,08+07 3.526+4 1.30-1 1.000 .727 .713
1.0000 .9911 9.68+07 4.119+4 2.06-1 1.000 .727 .689
1.0000 .9894 1.85+08 4.914+4 3.20-1 1.000 .727 .669
1.0000 .9873 3.52408 6.010+4 4.86-1 1.000 .727 .654
1.0000 .9846 6.70+08 7.480+4 7.29-1 1,000 .727 .644
1.0000 .9812 1.28+09 9.363+4 1.0940 1.000 .727 .637
1.0000 .9769 2.43+09 1.166+5 1.65+40 1.000 .727 .629
.9999 .9715 4.63+090 1.457+5 2.47+0 1.000 .727 .621
,9000 .0648 8.83+09 1.843+5 3,67+0 1.000 .727 .616
.0998 .0%563 1.68+10 2.352+5 5,43+0 1.000 .727 .612
.9997 .9454 3.21+10 3.019+45 8.,00+0 1.000 .727 .611
.0994 .9318 6,11+10 3.885+45 1.18+1 1.000 .727 .610
.9990 .9147 1.16+11 5.007+45 1.73+1 1.000 .727 .609
.9980 .8885 2.52+11 6.801+5 2.75+1 1.000 .727 .608
,0045 ,8343 8.24+11 1.088+6 5.59+1 1.000 .727 .608
,9B72 .7664 2.44+12 1.675+6 1.07+2 1.000 .727 .608
.9730 .6833 7.08+12 2.384+6 2.17+2 1.000 .727 .605
9448 5881 2.26+13 3.079+6 5.36+2 1.000 .727 .605
8922 .4921 7.66+13 3.919+6 1.43+3 1.000 .727 .605
8340 .4285 1.80+14 4.621+46 2.86+43 1,000 .727 .605
.7795 .3860 3.25+14 5.18846 4.60+43 1.000 .727 .605
7071 .3425 6.04+14 5.870+6 7.54+3 1.000 .726 .605
6460 .3127 ©0.28+14 6.410+46 1.06+44 .999 .725 .605
5808 .2850 1.38+15 6.987+6 1.45+4 .998 .723 .606
5307 .2658 1.82+15 7.437+6 1.79+4 .994 .722 .607
4747 .2456 2.41+415 7.949+6 2.22+4 .986 .719 .608
4120 .2242 3.23+15 B.540+6 2.78+44 .971 .715 .610
3398 .2002 4.43+15 9.254+6 3.54+4 .939 .706 .614
2798 .1802 5.70+415 9.896+6 4.30+4 .895 .693 .620
2312 .1636 6.98+15 1.047+7 5.03+4 .841 .679 .627
1794 .1449 B8.66+15 1,116+47 5.96+4 ,756 .655 .639
.1240 .1228 1.10+16 1.20147 7.23+4 ,620 .617 .659
.0873 .0952 1.44+16 1.309+7 0.13+4 .410 .555 .695
0168 .0562 1.95+16 1,445+7 1.23+5 .127 .453 .762
0027 .0295 2.24+16 1.511+7 1.43+5 .022 .395 .807
0000 .0000 2.37+16 1.540+7 1.5345 .000 .368 .829
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PROPERTIES OF AUD STARS
—_———— e e e
M, MO MR MU M M, P ! Lyvind
(Mo) Z (EAGB) (TPAGB) (TPAGB) (M) (Mg (ay) (o) 00 ot
[ 0016  -361 -1 -403 1000 0568 740  AME+05 GIE+04 0141
[ T— 0016 -3m -3 -452 1500 0600 1180 729E+04 9SE+04 0.3
2W)caiiio 0016 -3 -3 -49 2000 0633 1510  106E+06 12E+05 Q114
28 e 0016 -365 -3 ~S14 2500 0666 1850 207E+06 LIE+05 0083
35 s 0016 =517  -4m -565 3500 0751 2370  297E405 13E+05 0438
S cnidass 0016  —591 -561 -622 5000 0891 2800 142E+05 12E405 034
0945 ........ 0008 -3 -2% -392 012 0883 315 S4SE+05 22E+04 0040
T ST 08 -2 -0 -422 1000 05T 620  SME+05 S6E+04  0.0%
15 s 0008 -19% -3 -476 1500 0619 970 BS0E+05 TSE+04 0091
1 R 0008 -405 337 -507 2000 0667 1210 125E+406 OIE+04 007
T —— 0008 397 -33 -532 2500 0678 1420 LME+06 LIE+05 0064
38 i 0008 54  -509 -584 3500 0794 1900 241E405 LIE+05 0487
80 0008 -595  -575 -639 5000 0910 2000 250E405 LIE+05 0440
089 ... 0004 -2 -288 -39 0691 0S8 310  7SSE+05  16E+04 0021
) o 004 =312 =309 -446 1000 0592 510 B2SE405 4JE+04 0082
1. - 004 -39 -4l -491 1500 06 700 9ME+05 SSE+04 0064
- 004 389 -4l -524 2000 0672 870  148E+06 76E+04 0051
25 s 004 -454 40} -546 2500 0691 1290 LISE+06 9SE+04 0082
A8 004 =570 -S4 -603 3500 0853 1100 L63E+0S BIE+04 0545
T 0004 —-600  -586 —646 5000 0941 1600  2ISE+05 9TE+04 0451
¥ e 0001 =341 =310 -468 1000 062 30 LIE+06 27E+04 0020
- 0001 -394 =355 . -505 1500 0663 320 LOSE+06 4TE404 0044
Loenaes oF Maon EVOLUTIONARY PrAses

f

Tegac Taom  Tmacs  Taoe

Ty Trosc Trap Tiien Teach Trrace Tacs b

) ) () (y) V] ) () fws  Trosc  Tmace  The

LI2SE+10 ST86E+407 3S63E+09 14I6E+08 1209E+07 AS46E+05 1258E+07 0409 0218 0041 0089

2E+09 SI9TE+07 1STOE+08 139E+08 O.191E+06 8266E+05 1002E+07 0373 0193 0090 0038

126E+09 SAME+07 1LGASE+08 1SO9E+08 7933E+06 LI7SE+06 9.J0SE+06 0361 0167 0143 0060

G192E+08 1429E+08 4283E+07 2805E+08 1084E+07 21B4E+06 1303E407 0051 0511 0201 0046

2307E+08 1669E+06 LIWOE+07 9.142E+07 2793E+06 4270E+05 320E+06 0018 1929 0153 0035

9SHE+07 16IE+0S 2STBE+06 23SIE+07 LMSE+06 26M4E+05 1408E+06 0015 3869 0229 0060

LO0S2E+10 6OS4E+07 30ME+09 1IS6E+08 1LOSTE+07 S74E+05 LIME+07 0449 (0183 0054 0082

RI0E+09 4S60E+07 2776E+09 1336E+08 O600E+06 GSO2E+05 1025E+07 0364 0211 0068 0077

2461E+09 IAOE+07 SIM0E+08 1IME+08 7783E+06 938SE+06 BTUE+06 0265 0253 0121 0067

10ISE+09 44S8E+07 1286E+08 1.S20E+08 1MOE+07 13E+06 I14ME+07 0293 0331 0100 0097

SI0E+08 9028E+06 33SSE+07 2209E+08 LO3SE+07 1827E+06 1207E+07 Q041 1349 0177 005

2000E+08 LIOE+06 O042E+06 6388E+07 303E+06 3ISO9E+0S 3383E+06 0017 3075 0116 0053

8S67E+07 2496E+05 2426E+06 2161E+07 BO0ME+05 360IE+05 LISOE+06 0012 4662 0448 0053

LO%E+10 6276E+07 2617E+09 1294E+08 LIZE+07 7.711E+05 124E+07 0485 0192 0068 0093

66S0E+09 SSTE+07 211IE+409 1299E+08 BOOSE+06 S684E+05 S87SE+06 0459 0ISI 0108  0.069
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