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                        Preface 

 
These are the lecture notes of my graduate class  “Understanding Stellar Evolution” 

(AST531)  that I have been giving at the University of Washington in Seattle 

in the spring quarter of almost every other year since 2004. 

 

These notes have developed over the years due to comments  and suggestions by students 

and requests by the staff.  (I am sure they will keep evolving). 

They are written as “lecture notes”  rather than in the form of a book.  I have chosen for 

this form because I find it more easy to teach from them, and I think it is easier for the 

students to quickly see the important points in explanations and descriptions. 

 

I have avoided (long) purely mathematical explanations. Although these may be appealing, 

straight forward and physically correct, they often obscure the physical processes behind 

them. So, where possible, I explain concepts  in simple (?) or intuitive physical terms,  

giving the reference where the more rigorous explanations and derivations can be found. 

My goal is to give the students a “feeling” and  “understanding”  of stellar evolution. 

From the reactions of the students, I sense that this is appreciated.     

 

I am grateful for my Utrecht colleague Onno Pols, for his lecture notes on “Stellar 

structure and evolution” and the more recent one on “Binary evolution”.  They often 

formed the skeleton of my lectures. I also thank Maurizio Salaris for providing me with the 

pictures from his book “Evolution of stars and stellar populations”.   

 

The first version of these lecture notes in Word were typed by Rachel Beck. 

(The first versions were handwritten). Thanks Rachel for deciphering my scribbles with its 

many equations. You did an excellent job.  I am also grateful to Chris Suberlak, for 

painstakingly finding all the errors and typos in the last version. I hope you found them all!  

 

Most thanks go to the many graduate students who followed this course. I thank them for 

their many discussions, comments and suggestions about this class, the notes and the 

exercises.    

    --- I learned a lot from your constant questioning during the lectures --- 

 

 

 

 

Henny Lamers, Seattle, June 11 2014 

      h.j.g.l.m.lamers@uu.nl 
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Chapter 1.   Introduction and Observations 

 
This section contains a recapitulation of the information about stars and stellar 

evolution from introductory courses. It is meant to refresh your memory by 

giving topics and suggestions for reading. 

 

1.1 What is a star?           (OP 1,  DP 1.1) : read this 

 

1.2 What can we learn from observations? 
             (OP1,  DP 1.2): read this 

 

1.3 How can we measure stellar parameters?       
   a. Distance  

   b. Mass  

   c. Radius  

   d. Surface Temperature  

   e. Luminosity  

   f. Composition  

   g. Surface Gravity  

   h. Rotation Velocity  

   i. Surface Magnetic Field  

 

1.4 Mass Luminosity Relation (OP 1.2.2,  DP 1.4) 

  - Valid for main sequence stars, massive giants (M> 20 Msun) 

  - Not valid for: 

   red giants, horizontal branch stars, AGB stars, white dwarfs, neutron stars. 

 

             

                               Fig 1.1   

                        The mass-luminosity relation    

       from double-lined spectroscopic 

binaries 

  (Pols, Fig 1.3) 
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      The mean slope in the mass range of 0.8 < M < 30 Msun  is 3.8.             L ~M
3.8 

     
 
  

       For masses above M>30 Msun  the M-L relation is less steep, because of the increasing      

       role of the radiation pressure, as we will see later.  

        

        For masses below M < 0.8 Msun  the mass luminosity relation is less steep because of  

       the increasing role of convection throughout the star and the different opacity. 

 

1.5   Hertzsprung-Russell Diagrams  (OP 1.2.1,  DP 1.4) 

 

    Young Open Clusters  

         Old Globular Clusters  

         Field stars 

            - magnitude limited samples 

             - distance limited samples 

 

Q?   What do they represent, why are they different?  

 

 

Fig 1.2   

 

The H-R diagram of stars in the 

solar neighbourhood measured 

by the Hipparcos satellite. 
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           Pleiades  =  50 Myrs               Hyades  =  600 Myrs                 M3         =  10 Gyr 

Fig 1.3   H-R diagrams of clusters with different ages  (DP Fig 1.5) 

           

 

 

 

Fig 1.4    Nomenclature of 

the various regions  in the 

H-R diagram 

     Main sequence 

     Turnoff  point 

 Subgiant branch 

 Red giant branch 

 Asymptotic giant branch 

 Horizontal branch 

 Blue stragglers 
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1.6 Summary of Stellar Characteristics 
   

  Assumptions 

 

1.   Star is spherically symmetric 

- Physical quantities vary only in radial direction: P(r), ρ(r), T(r), etc.   

Q?                   - Ignore effects of rotation and B- fields? When is this allowed?  

 

2.   Star is in hydrostatic equilibrium 

Q?                   - When is this assumption justified, timescale?  

 

3.   Energy sources are 

- Gravitational energy 

- Thermonuclear reactions 

- Internal (thermal) energy (important for white dwarfs) 

 

4.   Energy transport mechanisms 

- Radiation 

- Convection 

- Conduction (white dwarfs) 

 

5.   Chemical composition 

- Newly formed stars have homogeneous composition 

- Assume initial composition (from surface spectrum) 

          X = Mass fraction of H 

          Y = Mass fraction of He  

          Z = Rest, mainly C, N, O 

- Follow composition changes throughout the star during evolution 
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          Chapter 2.    Hydrostatic Equilibrium 
 

 

2.1 Conservation of Mass (mass continuity equation) 
 

   

  Spherical shell of thickness dr:         
   

  
           

 

2.2 Hydrostatic Equilibrium   
 

  Equation of motion of one cm
3
 gas, density ρ in shell dr  (Newton f = m. a) 

     

      
   

   
  

   

  
  

  

  
 

 

  in H.E.   
   

   
=0,   so   

 

                  
  

  
   

   

  
           with mass continuity    

 

    
 dMr/dr 

 ↓ 

 

   

 

                  Consequence: 

 

                
      

    

  

 
  

      

    
 

  

 
 

  so 

     
   

    
   with           

   

   This is a very safe lower limit because r << R   near center.  Better estimate: 

 

  
  

  
 
    

  
  

          

  
           with          so         

   

  
   

   
 

  
  

  The proportionality factor depends on density concentration. 
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       Estimate for the Sun: Pc   

 

    
   

               

         
                            

 

  Actually:    
                because       

  

Q? Could you have “guessed” that      
     based on simple physical insight? 

 Hint: consider weight of a column from r = 0  R 

 

 

  Estimate of central Tc  (if Pgas >> Prad) 

 

  Ideal gas law:     
 

   
    

 

In center:        
       

    

   
 

  

 
   

   

   
 

 

   
   

 
 
  

 
  

 

  Estimate for the Sun:   
  

             

        
 
             

      
        

 

    the actual value:   
           

 

Q?  Why is this estimate of Tc better than the one of Pc? 

 

------------------------------------------------------------------------------------------------------------- 

H2.1     Homework 
 

  Improved estimates of central Tc and Pc  

 

       Assume that         
 

  
 
 

  (not a bad approximation) 

 

  - Calculate the mean density in the star 

  - Calculate central pressure (using the proper HE equation) 

  - Estimate the central temperature (using ideal gas law) 

  - Apply this to: 

   Sun: 1Mʘ, 1Rʘ 

  Massive O5V star: 50Mʘ,  20Rʘ 

- Compare the values with those of structure models and comment on the  

   results of this comparison. (e.g Appendix C1) 

-------------------------------------------------------------------------------------------------------------  
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2.3 The Virial Theorem: consequence of HE  

 
The virial theorem links the gravitational potential energy to the internal 

(kinetic) energy of star as whole. 

  

 H.E.  

 

  
  

  
 
    

  
  

 

 multiply by 4πr
3
dr and integrate from 0 → R* 

 

        
  

 
   

   

 
 

  

 
        

 

  a)    
   

 
  

  

 
              total pot. energy of star (also called Ω) 

 

  b)        
  

 
   define        and                      

     

   remember        
 

 
   

 
 
      

 

 
     

 

 
 

    (integrate in parts) 

 

          
  

 
       

              
  

 
             

  

 
 

 

    0 because r = 0 and P(R*) = 0             

 

  We can link P to the internal energy. 

 

  Ideal gas: P = nkT (n = nr of particles per cm
3)

  

    u = 3/2 kTn  = internal energy per cm
3
 

   So   P = 2/3 · u 

 

So        
 

 
           

 

 
                  

 

 
 

 

   Ekin  or  U = total kinetic energy of star! 

 

            From  a)=b)  

 

                Only for star as a whole  (not for each layer individually !) 
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           The total energy of a star is negative. 

 

 This also applies to star clusters or clusters of galaxies in H.E.   

 That is how dark matter was discovered. 

 

Q?             The easiest way to derive Kepler’s 3
rd

 law is by using this virial equation. 

                   Show this. 

              

  Consequences for contracting stars 

 

When a star contracts and decreases its potential energy,  (Epot becomes more 

negative). The virial equilibrium requires 

 

d Ekin / dt = - 0.5 d Epot /dt 

 

1. So only half of the released energy goes into thermal energy for heating of 

the star, the other half must be radiated. 

2. When a star is out of nuclear energy and it compensates its radiative energy 

loss by contraction, it needs twice as much because half of it is used for 

heating the star! 

 

Q?  Does the Virial Theorem apply to degenerate stars? 

  hints: a. Did we use the ideal gas law in deriving it? 

    b. How did we use it? 

    c. For degenerate gas P = 1/3u 

If degenerate stars obey some Virial Theorem, what is it? What is the 

consequence? 
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           Chapter 3.   Gas Physics inside Stars 
 

3.1 Definitions 
 

  Mean kin energy per particle           
 

 
 kT                       for ions and electrons 

   

  Gas pressure  for ideal gas               P= nkT n = nr particles per cm
3
 

    (fully ionized gas, no molecules) 

 

  Mass fractions                X i                   e.g. XH, XHe, Xc … etc  

                                                                                                  (X= XH,   Y=XHe  ,  Z=rest)

  

  Atomic mass                Ai mH               e.g.  AC = 12 

 

                  Nr free electrons                qi        of element i (qi depends on r) 

              eg. qC = 1 at solar photosphere 

                  qC = 6 in solar core 

 

 Nr of atoms or ions per gram:                         

 

 Nr of free electrons per gram:                
 

             Define 

 

    mean mass per ion                                   
   

 

   mean mass per electron                        

                                                                                                                               
   

 

    mean mass per particle (electron or ions)       

      
 

                         
                    

   

 

  Fully ionized gas: 

  

                                  ;     (for    ) 
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------------------------------------------------------------------------------------------------------------- 

H3.1  Homework 
a. Derive a simple expression (in terms of X, Y, Z) for µ, µi, µe 

b. Show that for fully ionized gas: Nr of electrons per gram is (1+X) / 2mH and 

       μe = 2/(1+X)  

       (This factor plays a role in calculating the electron scattering coefficient) 

 

H3.2  Homework 
a. Calculate for a massive star the time it takes for a 60 Mʘ star to increase its 

mean internal temperature by a factor 5 (e.g. to go from H-burning at 

Tc~2.10
7
 K to He- burning at Tc~10

8
 K) if the luminosity remains constant. 

(Use M, R and L from Appendix C) 

 

b. Compare this with the Main Sequence lifetime. 

------------------------------------------------------------------------------------------------------------- 
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           Chapter 4.     Stellar Timescales 
 

4.1 Dynamical Timescale   
 

  1. Free-fall timescale: suppose pressure vanished suddenly 

   (restoring force = gravity) 

 

                g 

                 
 

     
  

  

  
                

 

   
 

                 
 

  2.  Sound speed crossing time:  suppose star is out of pressure equilibrium 

   (restoring force = gas pressure) 

 

                        
 

     
   

  

  
   

 

  
          

    
         

 

Q? Notice:  free fall time   sound speed crossing time!!  Why?? 

 

  Together they are called:   

  Dynamical time scale             
 

   
 

  This proportionality also applies to pulsating stars! 

 

Q?  Estimate the dynamical timescale of the Sun. 

 

 

4.2 Thermal Timescale = Kelvin-Helmholtz Timescale 
  

How long can a star keep up its radiation if nuclear fusion stops and thermal 

energy is the only energy source left? 

 

                   
    

 
  

   

 
   

Virial Eth   
 

 
 
    

          Kelvin-Helmholtz timescale          
   

  
  

         Also called: thermal – timescale 
 

Q?  What is τKH for stars like the sun? 
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4.3 Nuclear Timescale 

 

         
     

 
        

        

 

  ϵn = efficiency = fraction of mass that is converted into energy      
  

 
  

        H-fusion:  ϵH = 0.007 

        He-fusion:  ϵHe = 0.0007 

  fM = fraction of stellar mass that takes part in nuclear fusion 

   Sun:  fM ~ 0.10 

        For MS stars: fM · ƐH   10
-3

 

 

           Nuclear timescale:  

 

 

   

  For Sun: 

  M = 2.10
33

gr, L = 3.6
33

erg/s         
                   

                       
   

 

Q?      The actual MS phase of massive stars (M > 30 Msun) is longer than  

  10
10

 (M/Msun)/(L/Lsun) yrs , by factor ~ 3 to 5.   

  Can you think of a reason ? 

 

 

4.4 Comparison of timescales 
 

                 Sun: 1 hr << 3.10
7
 yr << 10

10
 yr 

 

      So: 

        - except for explosive phases, stars are always in quasi-hydrostatic equilibrium! 

  - contraction phases last about 1% of nuclear phases 

 

------------------------------------------------------------------------------------------------------------ 

H4.1 Homework 

  Calculate dynamical, thermal, nuclear timescales and their ratios of 

 - MS star of 1 Msun 

 - MS star of 50 Msun 

 - Red supergiant 20 Msun 

 - AGB star 

 - White dwarfs 

      and comment on the consequences of these results. 

      (For data of AGB stars: see Appendix F) 

------------------------------------------------------------------------------------------------------------- 

          
            H-fusion 

          
            He-fusion 
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           Chapter 5.    The Equation of State 

 

5.1 Gas Pressure 

 
              The equation of state (EOS) describes the relation between P. T , ρ 

                  

          Fig 5.1  Consider particles in box 1x1x1 cm
3
 

 

Calculate the force on one side (1cm
2
)  

by the collisions (momentum exchange)  

of all particles per second. (OP Fig 3.1) 

 

 

 

 

  Simplified : assume all particles have the same speed v 

  

   time between collisions on same side: 

 

                        (l = 1 for 1cm
3
) 

 

   momentum transfer per collision                                                      

  

 Q?             Why 2? 

 

   momentum transfer per particle per second =  

 

    
 

  
              

 

   integrate over all possible angles for an isotropic velocity distribution 

 

                  
   

 
 
 

 
      

   
 
  

 

 
 

 

   multiply by total nr of particles    (n= particle density) 

 

     

 

   Better:  general distribution of velocities and momenta 

 

                     
 

 
 

 

   1/3 from integration over all possible angles: isotropic 

P = 1/3 v.p.n 
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  Total pressure: 

 

  P  =  Pion + Pelectr + Prad  =  Pgas + Prad 

 

This is also expressed as: 

                         Pgas = βP with   0 < β < 1 β = 0 : Prad dominates 

    Prad = (1 – β)P  β = 1 : Pgas dominates 

 

Almost all stars are dominated by gas pressure. Only in the most massive ones 

(M > 30Mʘ) is radiation pressure in the center important. 

 

5.2 Ideal Gas   (OP 3.3.2) 

 

              
      

          
    

       

      Maxwell distribution   
 

 
                

  

 
 

          
 

        Ion Pressure of Ideal Gas 
 

           with           with 
 

  
   

 

 
 

 

  
 

     
   

  
                              

 

  
                                    

 

       Electron Pressure of Ideal Gas 
 

          
   

  
 with 1/µe  

 

 
       only in stellar interior 

 

       Gas Pressure of Ideal Gas 

 
      

 

                                                                       with 1/µ = 1/µe + 1/µi 
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5.3 Degeneracy  (OP 3.3.5) 

 

At very high densities, or very low temperatures, the quantum mechanical 

effects become important. This changes the relation between P, T and ρ,  i.e. the 

equation of state. 

 

  a. Heisenberg uncertainty principle:  

   Δ x Δp > h  in 1-dimension   [h] = erg.s = [g cm
2
/s] 

   Δ Vol Δ
3
p > h

3 
 in 3-dimensional phase-space 

                 h 
3 

is the unit of phase-space volume 

 

  b. Pauli exclusion principle:  

No two identical particles (same quantum-state) can exist at same time at 

same place, i.e.  in same phase-space volume h
3
   at most 2 electrons 

(spin up and spin down.) 

 

  Simple 1-D demonstration: 

  What happens if you squeeze more and more particles in a volume? 

      

 
 

  Fig. 5.2   1 dimensional velocity distributions at  increasing density 

- Maxwellian 

- particle degeneracy = P.D. = still Maxwell tail  

- complete degeneracy = C.D. = rectangular distribution 

- relativistic = R.D. =  most particles have v ~ c    p.v = p.c 

 

 

Q?  What is the role of temperature in the transition from Maxwellian to degenerate 

distribution? 

                  What is the role of the particle mass? 
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5.3.1 Partial Degeneracy in 3-D distribution:  (O.P. Fig 3.2) 

 

Fig. 5.3  Electron momentum distributions 

     

 
 

5.3.2 Complete Degeneracy:  

        
  n(p) distribution is rectangular in nr per (cm

3
 g. cm/s)  

 

  Electrons:            
   

 

      
 

 

  
                          if p < pF  (F= Fermi) 

                         
                             if      

  Derive pF: 

   Electron density:            
  

  

 
  

 

  
       

  

 
 

  

   
   
  

   So          
      

  
 
   

 

 

  Now we can find  Pe, with v = p/me 

 

                     
 

 
              

 

 
 

  

  
 
 

  
       

  

 
 

  

    
  
   with  pF ~ ne

1/3
 

 

  So:  Pe (C.D)~ ne
5/3 

   independent of T ! 
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      if        i.e.  if       

 

5.3.3 Extreme Relativistic Degeneracy:  
 
  most electrons have v   c and v.p = c.p 

 

  Pc  
 

 
              

    
 

 
            

    

 

    
  

   
         

  

   
    

   

 
   with        

   
 

 

  So:   Pe (R.D) ~ ne
4/3

    independent of T. 

 

            
       

    

 

 with    
           

        

           
 

 

5.3.4   Partial Degeneracy (Not derived, just for completeness)   

                                                                 (See Maeder 7.7 for the derivation) 

 

  n(p) is not a rectangular profile but has a Maxwell tail  
 

          
  

   
       

               

   where             
    

      
  

 

 
 

 

  All of this was for electron degeneracy. 

 

Q?  Do baryons also become degenerate?  (in particular He-nuclei or neutrons) 

  If so, at the same density as electrons? 

 

  Hints:  

            1. Energy exchange      
   

 

 
        

  > 

  2. Degeneracy occurs when                      
 

  
 

       i.e. when p reaches some value that depends on the density  
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5.3.5   The equation of state: completely degenerate electron gas 

 
             Fig 5.4:  the transition in the EOS for completely degenerate electron  

                gas  (O.P. Fig. 3.3). The transition occurs at  ρ ≈ 10
6
 μe     g. cm

-3.
 

 
 
5.4 Radiation Pressure 
 

  Momentum of a photon: p = hv/c  n(p)dp = n(v)dv 

      velocity = c 

 

       
 

 
              

         
    

  
  

        
      Blackbody law = Planck function 

 

  so 

 

        
    

  
  

        
 
 

 
        with      

 

 
       

  

 So      
 

 
 

  

 
  

 

 
        

 

      
 

 
        

  

 
 

     

      
 = 7.56 10

-15
 erg. cm

-3
 K

-4
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5.5 Limits of the equations of state 
 

 Fig 5.5:  the regimes of the various equations of state in a ρ, T diagram.  (O.P. Fig 3.4) 
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 ------------------------------------------------------------------------------------------------------------- 

 

H5.1 Homework 

 

  Equation of State 

 

  - Derive the limits/boundaries between the 4 types of the equations of state 

(Prad, ideal gas, Complete Degeneracy, Relative Degeneracy) by 

considering where in the (ρ, T) diagram the pressures are equal (Pa = Pb) 

 

                  -    How do these boundaries change if we go from a star consisting of H to one 

consisting of He? 

 

  - Explain in words (physics!) why these boundaries are (in)dependent of T. 

 

  - The figure above shows the limits of the EoS regions, together with the T-ρ 

structure of several stars. Consider the consequences, in terms of the 

conditions of the gas, the density and the radius of the stars. 

 

H5.2 Homework 
 

  Radiation Pressure 

 

- Use the models of Appendix C1 and C2  to calculate the ratio Prad/Pgas in 

the center of main sequence stars of 0.8 < M < 120Mʘ. 

At what masses is radiation pressure significant (Prad/Pgas > 0.5)? 

 

------------------------------------------------------------------------------------------------------------- 
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5.6 Polytropic Gas  
 

        γ = polytrope index 

 

The structure of polytropic stars is easy, because there is no T-dependence. So 

HE  P(r) and ρ(r)!  

 

Historical importance: Eddington “guessed” that stars behave as polytropes; he 

calculated the first model for the solar interior using the polytrope 

approximation P ~ ρ
4/3

 and found approximately the correct M, R and even L. 

 

 Which stars behave as polytrope? 

 

  a. Complete electron degenerate stars:  because  P ~ ρ
5/3

 ~ n
5/3

 

 

  b. Relativistic degenerate stars:  because  P ~ ρ
4/3

 ~ n
4/3

 

 

c. Stars dominated by radiation pressure   Prad ~ T
4 

           ideal gas P ~ ρ                           
    

                 T ~ P/ρ 

 

  d. Stars with a constant ratio               (this is what Eddington assumed) 

                           →           (as above) 

 

  e. Fully convective stars P ~ ρ
5/3 

 (we will proof this below) 

 

  In all these cases: 

 

- if gas behaves as polytrope            

                     
-  and gas behaves ideal                                  

 

 

  If a star is a polytrope  then: 

 

H.E. defines the P(r) and ρ(r). If the star is not degenerate then T(r) = 
 

 
 · 
    

    
  

is also known,  but T(r) defines the energy flow by radiation. 

 

 So: luminosity is known !!   (We will show this later) 
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----------------------------------------------------------------------------------

H5.3 Homework 
 

- The location of a modern solar model in the T, ρ diagram is shown in the 

figure 5.5 and listed in the Appendix D. Can you estimate the best value  

of γ ? (Ignore the outer layers of the star.) 

 

- In the first model of the Sun by Eddingtion (1928) he assumed that the ratio    

Prad /P gas  = constant.  Compare the value of γ that he adopted with the one 

that you derive from the model. Comment on the result. 

Show from the Solar model in App D how good/bad  Eddington’s 

assumption was. 

             

- What is the best value of γ for a MS star of 0.1Msun and 100  Msun? 

(derive from fig 5.5).  Explain why these values could have been guessed. 

------------------------------------------------------------------------------------------------------------- 

 

5.7  Proof that a fully convective adiabatic star is a polytrope 

 

         Assume that convection is adiabatic: convective cells have no energy loss or gain 

 

                   First law of Thermodynamics: du + PdV = dQ 

        

                   Adiabatic condition:   dQ = 0 

 

         u = specific internal energy (in ergs/gram) 

 

 ideal gas: u=(3/2) NkT  N=nr particles per gram        N=nV 

    

   P = nkT  n= nr particles per cm
3
          n=N/V  P.V = NkT 

 

   V = volume of one gram of gas = 1/ρ 

 

               
 

 
             

 

 
    

 

 
         

           
 

 
     

 

 
       

  

 
  

 

 

  

 
 

 So 

 

                       

 

 for ideal gas        

               

 

Q? Can a fully convective star be completely adiabatic? 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       32 

 5.8       The polytrope index of partially ionized gas 

 
If gas is partially ionized, then u ≠ (3/2)NkT because part of energy goes into 

ionization of atoms or dissociation of molecules! 

 Convective zones are often partially ionized (see later). 

  

                        

                                                   Fig 5.5  The   

               polytrope index of  

                        partially ionized 

                         H-gas. 

 

 

 

                 Partially ionized gas reaches a minimum value of  γ= 1.19 close to  

                 half-ionization.  (For the derivation  see Pols: section 3.5 ) 

 

Fig 5.6   The polytrope index of partially ionized H-gas for various densities  (OP Fig 3.5) 

              The polytropic index γ is expressed in terms of the adiabatic temperature      

              gradient  Δ=d ln T/ d ln P   and  γ = d ln P / d ln ρ 

                                      
    

    
    so        

 

     
 

                   =0.4 corresponds to γ = 5/3 and      =0.25  corresponds to γ = 4/3 

 

                
Q?   Explain why     =0.4 at both the high and low temperature end. 

Q?   Why does  the dip shift to higher T if the density increases? 

Q?   What is the physical reason that γ drops in a partially ionized region? 
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  Chapter 6.   Opacities in Stars 

 
                  For understanding and calculating stellar structure,  in particular the energy    

                  transport by radiation, we have to know the absorption coefficient of the gas as  

                  a function of  density, temperature and composition. The absorption   

                  coefficients for radiation depend on wavelength. However, for solving the  

                  equation of radiative transfer inside a star we can use a wavelength-independent  

                  mean value, which is called the Rosseland-mean opacity. Its  

                  definition is derived below in section  6.7. 

 

6.1 Electron Scattering :  σe in cm
2
/g 

 

 σe is the scattering coefficient per gram of gas.    Q?   Why is it in cm
2
/g? 

Deep inside stars gas is fully ionized and electron scattering is the dominant 

opacity 

 

          
 

           
                = Thomson cross-section for electrons 

      = nr of electrons per gram 

           = mean particle mass per electron 

 

    
  

  
 
 

  
 
    

  
     

   

 
                   

 

6.2 Free-free absorption       in cm
2
/g 

 

 Free-free absorption of a photon by an electron that briefly interacts with an ion  

 (= inverse of Bremstrahling)      

           Z = charge of ions 

      ni = ion density in  nr/cm
3
 

      ne = electr dens in nr/cm
3
    

 

      per cm
3
             

      

Q? Why is      ~ ni · ne 

 

 with             

               

      per cm
3
                   

 

                  So      in  cm
2
/g  is 
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6.3 Bound-free absorption : κbf    in cm
2
/g 

 

 The Kramers bound-free opacity law is calculated by summing  all possible 

      bound-free transitions (i.e. photo-ionizations) of many ions

 
 
   

 

                    

                  Notice that it is much larger than the free-free absorption. 

Q? Why is κbf ~ ρ?  if it is defined per gram. 

 

6.4 Bound-bound absorption:  κbb in cm
2 

/g 
 

Very difficult to calculate (!) due to numerous possible transitions, especially of 

highly ionized Fe-group elements. The Fe group elements give a peak in the 

opacity at around 10
5
 to 10

6
 K, depending on the density (see below).  

 

6.5 Total opacity:  κRosseland   in cm
2 

/g 

  

 

 

 

 

 

 

 

 

 

Fig 6.1  

The total  

Rosseland-mean 

opacity  for solar 

composition  as a 

function of T and ρ 

(OPAL data)  

 

 

 

 

 

 

 

κbf = 4.3 x 10
25

 (1+X). Z.ρ.T
-7/2    

 cm
2
/g  

Tables of stellar opacities in stars and stellar atmospheres  

can be found on the web at 

http://www-phys.llnl.gov/Research/OPAL/index.html 

http://www.osc.edu/hpc/opacities/ 

http://webs.wichita.edu/physics/opacity/ 

 

http://www-phys.llnl.gov/Research/OPAL/index.html
http://www.osc.edu/hpc/opacities/
http://webs.wichita.edu/physics/opacity/
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 Notice 

1. At high T  and low density all matter is ionized so          cm
2
/g 

 

2. As T decreases  bound-free and free-free absorption gets important 

            with   ~ρ.T-7/2. This explains the downslope to higher T. 

 

3. At intermediate temperatures (depending on ρ) the gas is partly ionized  

many more possible electron transitions  huge opacities. This produces 

the peaks around 10
5
 K   for densities 10

-6
 to 10

-4
 g/cm

3
, i.e. inside the stars. 

   

4. The peak at 10
4
 < T < 10

5
 K  at very low density,   10 

-10 
 to  10 

-8 
  g/cm

3 
 is 

due to H and is responsible for convection in the outer layers of cool stars!  

 

5. The Fe-opacity peak  around  10
5 

 to 10
6  

K  is important for Cepheids and 

Wolf-Rayet stars. 

 

6. At very low T < 10
4
 K, the opacity (due to H

-
) decreases steeply to very low 

values, as   ~T
9
,  This explains the steep slope at low T. This is important 

for stars on the Hayashi track, AGB-stars and red supergiants. It explains 

why the effective temperatures of stars cannot drop below about 2000 K (as 

we will see later). 

 

Q? Why does the peak shift to higher temperatures when the density increases? 

 

6.6 Opacity in stellar atmospheres     
 

 There are other absorption/scattering processes in stellar atmospheres: 

 - H
-
 absorption (H with 2 electrons) in the solar photosphere and cool stars. 

 - Bound-bound transitions = abs/emission lines (blanketing of atmospheres) 

 - Dust absorption and scattering (AGB stars, OH/IR stars) 

 - etc. 

 We will not discuss these in the context of stellar structure.  They will later be  

                  discussed in the context of stellar winds. 

  

 

6.7 Rosseland-mean Opacities            

 
 All opacities mentioned in this section are independent of frequency.  

In reality, the absorption coefficients depend on frequency. For instance  

free-free absorption is proportional to      .   
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For the calculation of the stellar structure, the frequency-dependent absorption 

coefficients have been averaged over frequency in a particular way, i.e. by 

using a weighting function of dBv/dT. 

The resulting frequency-averaged absorption coefficients, mentioned above, are 

called Rosseland-mean opacities. They are defined as 

 

 
 

  
  

 

  

   

  
     

   

  
   

 

 

 

 
 

 
 Simple derivation of Rosseland-mean opacity 

 We will show later that the flux          
  

  

   

  
    

                  Define        
 

 
       

                  then          
 

  

   

  
    

  

  
 

 

 For calculating stellar evolution we want to write this as     
  

  

  

  
 

  

 So     
 

  

  

  
 
  

  
    

 

 
     

 

  

   

  
    

  

  
 

 

  
  

 

  

   

  
    

  

  
 

 

6.8 Mean-free Path of Photons :    

 

   
 

  
   

   

 
 
  

  
 

   
 
  

      

 

 Inside a star:  
        

        
             

 

 After 1cm a photon is absorbed and reemitted or scattered  

  photons quickly lose information on direction 

  radiation must be (almost) isotropic! 

 

Q? If radiation inside a star is isotropic, how can there be a radiative outward flux? 

 

Q? For a Brownian-motion the average radial distance traveled by a photon  

                   is       

(N = nr of random steps,   = step length) 

Use: v = c, r = Rsun to calculate the total length L and the time it takes    = L/c 

for a photon to move from center to outside of sun. 

 

Q?             - Is it still the same photon?  (same λ, v)? 

- Does it mean that, if the suns nuclear fusion would stop suddenly, it would   

   take us    seconds before we noticed?  

 - If not, how long would it take approximately before we noticed it? 
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------------------------------------------------------------------------------------------------------------- 

 

H6.1 Homework 
 

a. Estimate the fraction of the radiation that is non-isotropic in the sun at  

 r = 0.5 Rʘ? 

b. Could the same method be applied to derive the non-isotropic fraction of 

the radiation at r = 0.9 Rʘ? Why or  why not? 

c. If you would apply the same method as in a. would you over or 

underestimate the non-isotropic fraction? 

 

 Hint  

Consider this radiation density at some point (the length 

of the arrows is proportional to the radiative intensity in 

that direction) 

 

 

 

 

H6.2 Homework 
 

Identify in the figure of the total opacity (Sect 6.5) the region where electron 

scattering dominates and where ff + bf dominate. 

 Check the dependence on ρ and T in these regions. 

 ----------------------------------------------------------------------------------------------------------- 
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           Chapter 7.    Radiative Energy Transport  
 

   
7.1 Eddington’s Equation for radiative equilibrium 

 
 

 
  

  
  

 

 
 
 

  
 
  

  
 
  

    
 Eddington’s equation for optically thick case  

      a = radiation density constant = 4σ/c 

      σ = Stefan-Boltzman constant   

                                                                                   
    

        
 

 

 Intuitive derivation:  (easy to remember)    

      

        
     Consider a cm

3   
in a layer of 1 cm thickness 

 Flux from below:     
 

 

 Flux from above:     
  

 F= Net flux      
    

   
 

a.    
 

  
     ) 

b. F  ~  “transparency of layer” ~ 1/ abs coeff per cm      

c.         
  

 

 Combine these three conditions: 

 

 
  

    
 
  

  
 
 

  
     

 

  
 
  

 
    

  

  
     with           

 

 So from this simple intuitive derivation we expect 

 

 
  

  
 
  

  
 
  

  
 
  

    
 

 
This is very similar to the real Eddington equation for energy transport by 

radiation.  The difference of a factor 3/4 comes from proper integration of the 

radiation intensity over all angles. 
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              For me, the simplest way to remember Eddingtons equation is 

            

                          

              

     

  

                Comments: 

- OP 4.4.2 gives the full derivation in terms of radiative diffusion. 

 

- In several textbooks the Eddington equation is derived by using the 

radiation pressure.  But this is confusing, because radiative transfer is not 

related to the pressure balance but to the diffusion of energy. 

 

Q? Free-free absorption and bound-free absorptions are real absorptions: photons 

disappear.  But electron scattering does not “absorb” photons, it just sends them 

into another direction (with very small mean free path).   

So: why does electron scattering play a role at all in radiative transfer and in the 

structure of stars? 

 

NB.            Radiative equilibrium means that the energy is transported by radiation. 

                   It does NOT mean that the gravity is balanced by radiation pressure !  

 

  

    
 =  
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         Chapter 8.      The Mass-Luminosity Relation  

                                  and the Eddington Limit 
 

8.1 Thermal Equilibrium 
 

We have seen that (almost) all stars are in Hydrostatic Equilibrium (H.E.)  

Stars must also be in Thermal Equilibrium (T.E.), i.e. all energy generated in 

a star per second by nuclear fusion or contraction, must be transported outwards 

and emitted from the surface.  If a star is not in T.E. it quickly heats or cools 

inside.  The transport of energy outwards can be by convection or radiation.  

The layers are then in Convective Equilibrium (C.E.) or in Radiative 

Equilibrium (R.E.). 
 

8.2 The Mass-Luminosity relation for stars in H.E. and R.E. 

 
Stars in H.E. that transport  energy by radiation obey a strict mass-luminosity 

relation.  This can be derived rigorously for stars with a constant ratio Prad/Pgas 

(i.e. for polytropic stars with γ = 4/3 in R.E.)  but we will derive it intuitively. 

 

 We have seen that for stars in H.E. 

    
 

 
 
  

 
 

 

 We have also seen that for stars in R.E. 

 
  

    
  

 

 
 
 

  
 
    

  
 

 

 Approximate 

  
   

  
 
  
 

 
 ,                       ,                         

 

 This yields 

    
 

 

 

 
      

    

  
 
 

 
 
  

  

    

  
 
  

 
        (radius R cancels !) 

 

So, for stars in H.E. and R.E. we expect the following  

Mass-Luminosity relation 
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                  a.   This relation is not valid for stars that are largely convective, i.e. lower   

      Q?              main sequence stars and red (super) giants, and for degenerate stars. Why? 

        

b.   Considering the simplicity of our derivation, it fits surprisingly well the  

      observed M-L relation for massive main sequence stars of  0.8 < M < 30   

      Msun  :     L ~ M
x 
 with   x   3.8    and so  tnucl (MS) ~ M/L  ~ M

-2.8    
. 

 

                 c     The most surprising result is that we made no assumption about the  

                        energy production process (type of fusion or contraction). This shows that  

                        a star can only be in H.E. and R.E if it has some fixed luminosity:  

                        independent of the luminosity source! The energy generation process has to  

                        adjust itself to the required value, otherwise the star is not in equilibrium! 

 

                 d.   The dominant opacity in massive stars is electron scattering  

κ = σe   0.20(1+X) cm
2
/g. The values of κ and μ are  

κ = 0.34 and μ = 0.61 if  X = 0.70 and Y = 0.30 and  

κ = 0.20 and µ = 1.33 if  X=0 and Y=1.   

So a He star of 1Mʘ will be about 30x more luminous than a star of 1Mʘ 

with normal composition. This explains why hot horizontal branch stars 

are so much more luminous than the MS stars at the turn-off point, although 

they have about the same mass.  (See Fig 1.4) 

 

                  e    The M-L relation explains why stars of M > 1 Mʘ on the M.S. get brighter  

                        during their H-fusion. 

 

f. It also explains why the evolution tracks of massive stars are approximately 

horizontal, except in RSG phase when the star is largely convective. 

                  ------------------------------------------------------------------------------------------------ 

 

H8.1 Homework 
 

1. Calculate the expected increase in luminosity when a star of 2Mʘ has 

converted all its H in the core into He and the core contains 10% of the 

stellar mass.  

2. Compare the result  with the stellar evolution tracks in Appendix E. 

3. Calculate the expected value of the “constant” in the M-L relation. 

Compare the predicted luminosity of a 10 Mʘ main-sequence star with the 

value from evolutionary models. Which approximation that we made in the 

derivation is mainly responsible for the difference? 

4. Explain in words why stars in H.E. and R.E. obey a M-L relation that is 

independent of the energy source. (What is the basic physics behind it?) 

5. Consider three stars with the same mass. Star A is in radiative equilibrium. 

Star B has a convective core that contains 30% of its mass. Star C has a 

convective core that extends to 30% of its volume. Which one of the stars, B 

or C  will have a luminosity closest to that of star A. Explain this. 

                   ------------------------------------------------------------------------------------------ 
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8.3       The Maximum Stellar Mass and Luminosity: 

             the Eddington Limit 
 

For a star with strong radiation pressure, the inward force due to gravity should 

be larger than the outward force by radiation pressure because H.E. requires 

 

  
     

  
   

     

  
   

     

  
  

     

  
     with       

 

 
   

 

 Radiative Equilibrium requires 

  

 
     

  
 

 

  
 
   

 
  

  

 
 
   

 
 
    

    
 

 

 Combining these two equilibrium conditions gives (with r
2
 and ρr cancelling) 

 

      
        

    
 

 

This must apply at all radii, also at R* . 

In massive stars  electron scattering is the dominant opacity  and  it is about 

constant throughout the star. This gives an upper limit for the luminosity of 

massive  stars 

 

                       Eddington Luminosity 

 

If a star would be brighter than LE  it would be blown-up by its radiation 

pressure!  The electron scattering coefficient σe = 0.20 (1+X) cm
2
/g. 

 Filling in the constants gives 

 

 
  

  
 
       

  

 

  
        

 

  
 if   X = 0.70 

 

The influence of the radiation pressure is often expressed in terms of the 

Eddington factor 

 

   
 

  
 

  

     
  with     <1 for stable stars. 

 

                The empirically derived maximum stellar mass is Mmax   160 – 300 Mʘ  and  

                 Lmax   3 10
6 

Lʘ  in the cluster NGC6303 in the LMC (Crowther et al. 2010  

                 MNRAS 408, 731). 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       43 

 

----------------------------------------------------------------------------------------------------------- 

H8.2 Homework 
 

a. Derive the Mass-Luminosity relation for massive MS stars from the tables 

in Appendix C2.  Extrapolate this relation to higher masses by assuming                                                      

L/Lʘ = A(M/Mʘ)
α
  and derive A and α. 

      Compare this with the expression for the Eddington luminosity and derive     

      the maximum mass and maximum luminosity of stars. 

 

b. Now consider what happens deep inside a massive main-sequence star.  The 

luminosity of a massive star is generated in a small region, where 
    

    
         

   and          

i. How can this region be stable against radiation pressure? 

ii. What would happen if a region deep inside a star has L > LEdd? 

iii. The maximum stable models that have been calculated have M   125 

Mʘ and the maximum observed initial mass is 300 Mʘ. What is the 

reason for the difference between these values and your result in (a)? 

   ---------------------------------------------------------------------------------------------------------- 
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          Chapter 9.    Convective Energy Transport 

 

9.1       The convection criterium: 

 is the star stable against convection? 
 

 Qualitative picture  (K. Schwarzschild 1906)  

 

Idea: Assume that a blob of gas inside a star, accidentally starts moving 

upwards. If it keeps rising, that layer is obviously unstable for rising blobs = 

convection! If it falls back immediately, that layer is stable. 

 

 

 Fig 9.1 

Schematic 

representation 

of convective 

blobs. 

 

 

 

 

 It is easy to show that the blob will keep rising (due to the Archimedes force)  

 if     
  

  
 
 
  

  

  
 
 
 

 

Q? Show this, by considering a blob rising from r1 to r2, with r2 > r1. 

 Hint: blob is always in pressure equilibrium with its surroundings. 

 

Q: What is the reason for the absolute signs? 

 

  

9.2 The Schwarzschild criterium for convection 

 
 Idea: assume that the star is in radiative equilibrium.  (dT/dr)s = (dT/dr)rad 

(s  for “surroundings”).  What would happen to a blob of gas if it was 

accidentally displaced upwards? If the layer is convective, the temperature 

gradient will be adiabatic. 

 

 A layer will be convective if 

 

                       = Schwarzschild criterium 

 

or (easy to remember) : “the star always adopts the less steep                             

temperature gradient.” 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       45 

 

We will show below that the mean temperature gradient in a convective zone is 

very close to the adiabatic gradient 

 

                   Fig. 9.2 The Schwarzschild-criterium in a picture  

          

                
------------------------------------------------------------------------------------------------------------- 

H9.1 Homework 
 

Show that the condition                               that leads to the rising 

of hot bubbles, also leads to the descent of cool bubbles. 

--------------------------------------------------------------------------------- 

 

9.2.1 The Schwarzschild criterion in terms of the polytrope  

              index 
 

We can also express the Schwarzschild criterum for convection in terms of the 

local adiabatic polytrope index             

 

 Schwarzschild criterium:  convection if 

 

  
  

  
 
  
  

  

  
 
   
   

    

  
 
  
  

    

  
 
   

 

 

 For ideal gas        
    

  
    

 

 
 
    

  
    with  

    

  
  from H.E. 

 Polytrope index      

 

 So: convection occurs if    
 

   
 
    

  
    

 

    
 
    

  
          

 

  
  

  
 
   
  

     

   
  

 

 
  
  

  
  with 1.2 < γad < 5/3   (Section 5.5) 
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9.3 Convection in a layer with a μ-gradient 
 

 The Ledoux-criterium for convection 

 

We have derived the Schwarzschild criterium for convection by considering the 

rise of bubbles in a medium of constant chemical composition. We now 

consider the case of a chemically stratified star with the mean particle mass μ 

decreasing outward. 

Q? Why “decreasing”? 

 

If a bubble (b) rises adiabatically and the surrounding (s) is in radiative 

equilibrium, then the condition for convection to occur is: 

 

  
  

  
 
  
  

  

  
 
 
   or    

    

  
 
  
  

    

  
 
 
 

 

 With           and               (  = gas constant) 

 we find that convection occurs if 

 

  
    

  
 
 
  

    

  
 
 
  

    

  
 
 
  

    

  
 
 
  

    

  
 
 
  

    

  
 
 
 

 

Since the bubble will remain in pressure equilibrium with its surrounding, and 

since the composition inside the bubble will not change when it rises, we find 

the condition for convection: 

 

   
    

  
 
 
   

    

  
 
 
  

    

  
 
 
 

 

So, if convective cells rise adiabatically in a medium that is in radiative 

equilibrium and has a μ-gradient, the condition for convection is 

 

                                                                                    Ledoux-criterium 
 

 

 

 

 

 Notice:  

1. The Ledoux-criterium in a homogeneous layer is the same as the 

Schwarzschild criterium. 

2. For given adiabatic and radiative temperature gradients, a chemically 

stratified zone in a star is more stable against convection than a 

chemically homogeneous zone. 

3. Convection is very efficient in chemical mixing.  So the chemical 

stratification disappears in a convective zone and the zone will adopt the 

“mass-mean”  average of  μ. 
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9.4 The mixing length: 
                   How far does a convective cell rise before it dissolves in its surroundings? 

 

                   A rising convective cell will dissolve into its surroundings, i.e. loose its  

                   identity, when the temperature of the gas inside the cell gradually adjusts to the  

                   temperature of its surrounding by the loss of radiation or heat at its boundary.  

                   The distance a hot cell rises or a cold cell descends is called the “mixing  

                   length”:   . The proper calculation of this mixing length is complicated,  

                   because it involves the proper 3-D (magneto-) hydrodynamical calculations of  

                   convective flows. 

 

                  As a reasonable guess, we can assume that it will be of the order of the  

                  “pressure scaleheight” inside the star. We make a rough estimate of the  

                   pressure scaleheight. 

 

                   H.E. requires 

 

                  
  

  
   

   

  
  with     

  

  
     

 

 

  

  
    

   

  
 
 

  
 

 
    

  
  

   
  

 
 

  
 

                  Now if T and Mr  do not vary too strongly with distance and have mean values  

                  of   and     at distance r, we can approximate 

                                   
       

                  We see that the pressure scaleheight is approximately    
  

 
 
  

   
 
  

  
 

  

                  The mixing length for convection is usually written as        with       
 

N.B.  The assumption of near-constant T is a rather bad one, because there 

certainly is a temperature –gradient. The proper value of the pressure 

scaleheight can only be derived when the structure of the star has been 

calculated. 

                  However, for our purpose of estimating and for “getting a feeling” of the  

                  properties of the convection, the approximation  is good enough. 

 

                  The expression above also applies to stellar and planetary atmospheres, where it  

                  is usually written as         . 

                  This expression also applies to the earth atmosphere. 

 

        Q? Do you need extra oxygen when you climb Mount Everest (~10 km)? 
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9.5 The Efficiency of Convective Energy Transport 
 
 The convective flow has to transport the stellar luminosity.   

 We will make a simple estimate to get a “feeling” for the physical process. 

   
                  Fig. 9.3  The transport of energy by convection with velocity vc   through a  

                                 sphere with radius  r  inside the star. 

 Suppose:   

 - half the matter moves up,  the other half down 

 - upward velocity  = vc ,  downward velocity = –vc        (vc = vconvection) 

 - the difference is temperature between up and downward moving cells is 

     Tup - Tdown = ΔT 

 

 Then:  

  the difference in thermal energy content per cm
3 

 is (3/2)nkΔT 

 

 Consider transport through a sphere at distance r from the stellar center 

                     The amount of gas per sec through sphere r =  flow  ↑ - ↓ 

 

 Mass transport:               
              No net transport of gas 

 

 Energy transport through the shell by convection: 

  

         
 

 
         

    
 

 
            

          

    
 

   
           

      

 
            

  

 So               
         

 

 Estimate  this for a “typical” star  = Sun     

 

                
     

          

                                  
   

 
      extremely small! 
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                  We show that         is extremely small. 

    If                                        
       

    If             
                         

 

 So either : convection speed is very slow 

       or:  T-difference between up and down is very small 

 or: both   (This is what happens in reality, as we will see below). 

 

Q?   What is the physical reason that ΔTvc so very small?? 

 Hint: think in terms of gas-energy content. 

 

9.6 The convective velocity 
 

We can estimate the convection velocity by considering a convective cell as a 

balloon. 

 

                 Fig 9.4  Balloon analogy of convection for estimating convection velocity 

 

 Balloon :    b = balloon , s = surrounding 

                                                     

                     

                           Upward force = Archimedes force  

Downward force = drag 

 

 

                 

                  Convective cell : cylinder approximation 

 

                  
 

                  Up: F↑ = Archimedes force = Volume x density difference x gravity 

                                           

                    Weight difference       

          

         F↑         
     

  
  [cm

2
] · [cm] · [g/cm

3
] · [cm/s

2
] = [g cm/s

2
]  

 

 Down: Momentum transfer of gas that is pushed away at top = ram-force 

 

          F↓ =              
   [g/cm

3
] · [cm/s]

2
 · [cm

2
] = [g cm/s

2
] 

 
 mom          volume of displaced gas per sec 
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 The bubble (or balloon) reaches a constant upward velocity when F↑= F↓: 

     
              . So the speed of the convective cell is approximately 

 

   
                 

                                                                  

 where   ~ length of the rising bubble (cylinder) 

 

We can assume                   because of pressure equilibrium between 

inside and outside cell. 

  

 So      
  
 

  
 
      

 
 

 
                 This equation, in combination  with the one derived above from the energy  

                 transport  

 

                                       
         

 

                 provides expressions for both the convective velocity,   , and the temperature 

                 difference between the rising convective cells and the surroundings. 

                 The values that follow from this exercise are derived in Homework  H9.2 

 

------------------------------------------------------------------------------------------------------------- 

H9.2 Homework 
a. Calculate the thermal energy content of a cm

3
 of gas in the sun at r = 0.9 

Rʘ 

b. Calculate the speed of sound at that location. 

c. Assume that the temperature difference between the ascending and 

descending bubbles is δT of the mean local value, and that the velocity of the 

bubbles is δV of the local sound speed. 

Calculate the luminosity that would be transported by convection in this 

case. 

d. Compare this with the true luminosity, Lr, at 0.9 Rʘ.  

Derive the values of  δV and δT, and of ΔT  and vc. 

 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 H 9.3    Homework 
                  a. Sketch  a diagram of outward decreasing  μ as function of r. 

                     Adopt some lower limit and some upper limit  for a zone that would be  

                     convective according to the Schwarzschild criterium. 

                  b. Show schematically where the convection zone would be according to the  

                      Ledoux criterium for convection in a medium with a μ-gradient. 

                  c. Show how the μ -profile would be changed by  convection in these 2 cases.   

   ---------------------------------------------------------------------------------------------------------- 
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----------------------------------------------------------------------------------------------------------- 

H9.4 Homework    
 

a. Estimate the pressure scaleheight in the Sun at r = 0.9 Rsun, using the 

expression derived above. 

 b. Compare it with the real pressure scaleheight of a solar model. 

 c. Comment on the differences                                                                             

------------------------------------------------------------------------------------------------------------- 

 

9.7 Typical values of convective velocity and timescale 

 
 Estimate for the Sun    
                  (at r=0.5 Rsun, although the Sun is not convective  there) 

 

     
           

      

                   
   

        

 
  
 

  
                

 

 We have derived before 

 

          
       

         
               

   
        

   

  
      

   

 
         

   

 
 

 

 Now find ΔT 

 

 
  

  
                           (very small!) 

 

  Rise time of convective cells 

 

             
       

       
                     

 

 9.8 The superadiabatic T-gradient 
 

The mean T-gradient of the surroundings must be steeper than (dT/dr)ad  of  the 

convective cells, otherwise  the convection would stop. 

 

 So   
  

  
 
      

  
  

  
 
  
                      

  

  
 
      

  
  

  
 
  
  

  

  
 
              

 

 

 We have seen that the superadiabatic T-gradient produces a difference of only  

   1K over a distance of a pressure scaleheight. 
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                  So        
  

  
 
              

  
  

  
 
  

 

 So the real temperature gradient in a convection zone is 

  

  
  

  
   

  

  
 
  
         with         

 

 So we can safely adopt                     in a convection zone!  

 
9.9 Convection: Where and Why? 
 

 The Schwarzschild criterium for convection is  
  

  
 
   
  

  

  
 
  

 

With    
  

  
 
   
   (κ/T3 

) ∙
 
 ( Lr /4πr

2
) 

 From this we can see that there are two reasons for convection: 

 

                 1.    Layers where   is very large = layers where H is partly ionized  

(remember Fig 6.1) 

This occurs in outer layers of cool stars: 

- MS stars cooler than about F0   

  at type G0: a thin outer convection layer,   

  at type M :  almost fully convective 

- Red giants and supergiants : almost fully convective (except core) 

 

2.  Layers where Lr /4πr
2
 is very large = center of massive stars . 

 These stars have a high luminosity, created in small core. 

- MS stars of        , because the CNO-cycle has a strong 

   T-dependence. 

 

 
Fig. 8.4 Schematic picture of occurrence of convection for MS stars (KW p. 213, fig 22.7)  

              Shaded area = convective. Vertical lines indicate stellar masses. 
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 ------------------------------------------------------------------------------------------------------------- 

 

H9.5 Homework    
 

 Massive stars burn H via the CNO-cycle (to be discussed later). 

 This is very sensitive to T. 

 Explain why this gives massive MS stars convective cores. 

------------------------------------------------------------------------------------------------------------- 

 

 

9.10 Convective Overshooting 

 
The Schwarzschild criterium is derived from the condition that the Archimedes 

force provides an upward force.   

 

At the top and the bottom of the convection zone there is no up/down ward 

force, but the moving cells do not suddenly halt there. They will overshoot the 

convection boundaries. 

 

 First observational indications ~1985:  

                     nuclear products appear at surface of massive stars (especially He and N)     

                      before mass loss has  peeled the outer layers down to the mass of the old  

                     convective core. 

    So: there must have been some mixing to layers higher than the convective 

      core boundary. 

 

 From several comparisons between observations ↔ theory:  

overshooting is about 1 pressure scaleheight ! 

(see Maeder and Meynet 1987 AA) 

 

 Difference between convection and overshooting:  

  Convection     energy transport and mixing 

  Overshooting  only mixing  (but the temperature gradient is radiative) 
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9.11 Chemical Mixing by Convection 
 

                    
                 Fig. 8.5 Mixing in a stars with  inner or outer convection zones 

 

Consequence of mixing by convection and overshooting: 

Massive stars on the main sequence have convective cores.  Although the 

nuclear fusion happens in the very center, the nuclear products are mixed 

throughout the convective core.  One of the immediate consequences is that H 

is brought into the center from all over the convective core.  This results in an 

increase of the mass fraction  of the star that takes part in H-fusion 

(fM in the estimate of the nuclear timescale in Sect 4)  

from about fM   0.14 for solar type stars to fM   0.75 for stars with M > 60Mʘ. 

This extends the expected MS lifetimes of massive stars considerably. 

 

------------------------------------------------------------------------------------------------------------ 

H9.6 Homework    
 

Use the data shown in Appendix C2 (convective cores) to estimate as 

accurately as possible the MS lifetimes of stars of 1, 5, 20, 85 Mʘ and compare 

it with results of evolution models. What could be the reason for the systematic 

difference? 

 

H9.7     Homework 
 

a. Massive stars in the H-burning phase have a convective core. 

      The mass fraction of the convective core decreases during the main    

      sequence. Can you think of a reason why?  

b. How does this affect the He-abundance distribution in the star as a function 

of age during the MS phase. Explain this with a sketch. 

----------------------------------------------------------------------------------------------------------- 
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Chapter 10. Nuclear Fusion  (OP 6)  

 

During nuclear fusion two particles ( i and j) react, which results in one or two 

other particles (k and l). The particles involved have a charge Z and a mass A. 

 

 So the reaction is    i  +  j  →  k  +  l 

 

 nuclear charge conservation:  Zi  +  Zj  =  Zk  +  Zl 

     baryon number conservation:  Ai  +  Aj  =  Ak  + Al 

 

10.1 Reaction rates and energy production 

 
 The reaction rate is expressed as rijkl   (in nr per sec per gram) 
 

 The energy generation rate by nuclear fusion per gram per second is 

                      Q usually in MeV   (1MeV = 1.602 10
-6

 ergs) 

 

 where 

 

                     
  

 

 is the amount of energy produced by one reaction. 

The term in brackets is the mass-defect of the reaction, i.e. the mass that has 

been converted into energy. Q corresponds to the difference in binding energy  

                  of the nuclei involved in this reaction. 

 

                     

                             Fig 10.1 

 The average binding     

                                         energy in MeV  

                                per nucleon  

      (proton or neutron) 

 as a function of                 

                      atomic mass.  

                                 (Fig  OP6.1) 

 

  

                         

                            

 

 

 

                In the rising part of the curve, fusion produces energy. In the descending part of  

                the curve fusion requires energy but fission produces energy. 
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Q?           Explain in why the cosmic abundance of Li, Be etc. is low. 

The  mass defect can conveniently be expressed as a fraction of the mass that 

goes into the fusion process. This is the the mass defect fraction:  Δm/m 

 

 For instance, for H → He fusion :  Δm/m = 0.00712 

                                        For He → C fusion : Δm/m = 0.00065 

 

The table below gives the masses of isotopes involved in the most important 

nuclear fusion reactions in stars  (OP tbl 6.1) 

 

       

 
    

 

----------------------------------------------------------------------------------------------------------- 

H10.1 Homework 
 

a. Calculate the mass defect fractions of the following relations 

 

 4 
1
H → 

4
He 

 3 
4
He → 

12
C 

 
12

C + 
4
He → 

16
O 

 2 
16

O → 
28

Si + 
4
He 

 2 
28

Si → 
56

Fe 

 

b. Notice the trend and discuss what this trend implies for stellar evolution. 

----------------------------------------------------------------------------------------------------------- 
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10.2 Thermonuclear reaction rates and the Gamov peak 
 

Ions have a positive charge, so they will repulse one another by electric 

Coulomb-forces. To enable fusion, the particles have to overcome this 

Coulomb barrier. 

 

 
                   Fig 10.2  The tunneling effect through the Coulomb barrier (OP Fig 6.2)  

 

The velocity of the particles follows the Maxwell distribution. Only the fastest 

particles have a probability of overcoming the Coulomb barrier. But their 

number decreases rapidly with velocity v or energy E as 

 

                    
 

The quantum mechanical tunneling effect allows particles whose energy is 

smaller than the Coulomb barrier to overcome this barrier.  If it was not for this 

effect, the fusion process in stars would require a much higher T than in reality. 

The tunneling probability Pt   increases with energy as 

 

                
 

  
  

 

where b is a constant that depends on the reaction. The net result is that the 

reaction rate  scales with the product of the two functions, and shows a peak, 

called the Gamov-peak 

 

                             
 

  
–
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  Fig 10.3  

  The  Gamov peak is the  

   result of the product  

   of two functions: 

   the number of particles with energy    

   E, which decreases with E, and the   

   probability for tunneling, which   

   increases with E.   

    

 

 

Because of the strong dependence of the Coulomb barrier on the charge  of  the 

fusing ions and on the combination of the Maxwell energy distribution and the 

tunneling effect, the reaction rates of the fusion reactions depend very strongly 

on temperature. For instance 

 

H → He       (p-p chain)  T  1 10
7       

 ε ~ T
4
 

H → He       (CNO-cycle) T  2 10
7       

 ε ~ T
12

 

He → C       (3α-process) T  1 10
8       

 ε ~ T
40

 

 

                  NB: The reaction rates are not really power laws of T, but can be approximated  

                          by partial power laws. The exponents of the T-dependence given above are  

                          the exponents near the T-range of the fusion reactions in stars.  

 

10.3 Abundance changes 
 

The change in abundance per second of element i due to this reaction can be 

expressed as  

 

                    

 

 where mu =  mc /12  is the standard  atomic mass unit (amu). 

   

If element i is involved in more fusion reactions, some of which destroy and 

others crate i, then the change in abundance should be written as the sum of all 

possible destruction reactions (- sign) and all formation reaction (+ sign). 
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10.4 H→He  fusion    

 

                    There are two major routes for converting H into He in stars :  

                    - the proton-proton chain  (pp-chain) 

                    - the CNO cycle (there are actually two main cycles) 

                    Although the net reactions of these two routes are the same,  they have  very different 

                    effect on the abundance evolution of the stars. 

            

 10.4.1   The proton-proton chain 

 
 At 5 < T < 15 MK, H is predominantly fused via the proton-proton chain 

 

 H
+
 + H

+
 

 2
D + e

+
 + ν 

 
2
D + H

+
  

3
He + γ 

  
3
He + 

3
He  

4
He + H

+
 + H

+
 

 Net:     4H   
4
He + 2e

+
 + 2 ν + 2γ + 26.73 MeV 

 

 The positrons annihilate with free electrons to give e
+
 + e

-
 → 2γ 

  

 The energy production rate is :          
                     

 The  neutrinos carry  off about 1% of the energy 

 

Q? Why is     ~     ??   Why is        
   ?? 

 

                   There are actually 3 variations of the pp-chain, but pp1 is the most important  

                   one for stellar evolution. The net effect of all 3 reactions is the same. 
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10.4.2 The CNO- cycles   
 

At T > 15 MK, H is predominantly fused in CNO-cycles (or bi-cycle) 

 

   
12

C + H
+
  

13
N + γ  

14
N + H

+
  

15
O + γ 

   
13

N            
13

C + e
+ 

+ ν             
15

O               
15

N + e
+ 

+ ν 
   13

C + H
+
   

14
N + γ  

15
N + H

+      
 

16
O + γ 

   
14

N + H
+
   

15
O + γ  

16
O + H

+
       

17
F + γ 

   
15

O            
15

N + e
+
 + ν 

17
 F                

17
O + e

+ 
+ ν 

   
15

N + H
+
   

12
C + 

4
He  

17
O + H

+
        

14
N + 

4
He 

 Net:  
4
H+  

4
He + 2e

+
 + 2ν + 3γ 

 

 The positrons annihilate with free electrons to give e
+
 + e

-
 → 2γ 

 Q?            What is the net reaction of these two cycles? 

 

                             
 The energy production rate of the CNO-cycle is                  

   

                  where X14  is the mass fraction of  
14

N. 

 

                  Fig 10.4 shows production rates of of the pp-chain and the CNO-cycle. 

   

 

                  Fig 10.4  (Op Fig 6.5) 

The energy production at density 1 g/cm
3   

                                  

                                          and composition X=1.0 and XCNO=0.01. 

At T   1.5x10
7 
K the contributions of  the                           

                      CNO-cycle and the  pp-chain are about equal.   

In the Sun, at Tc   1.4x10
7
K,                

                               pp ~90%  and  CNO ~10% of energy 

production. 
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In massive stars with M   2 Mʘ the H-fusion goes mainly via the CNO-

cycles. 

 

Q? The energy production by the CNO-cycle has a much steeper dependence on T 

than the p-p-chain. 

What does that imply for the extent and the mass of the region where H-fusion 

occurs in massive stars?   

 

10.4.3 Equilibrium Abundances of the CNO-cycle 
 

                  The CNO=cycle is a cyclic process that quickly reaches equilibrium. 

 This has two important consequences: 

 

 1. The total number of C+N+O ions is conserved (CNO is just catalyst)   

 2. In equilibrium: all steps have to proceed at the same reaction rate 

                           (nr of reactions per gram per second).   

 

 The rate ,                , is the same for all steps. 

However, some steps have smaller cross-section, so a higher number of those 

ions are needed to keep the rate the same as for other steps. 

 

Q? Can you think of some consequences in terms of surface abundances of stars? 

  

 Define the lifetime of a nucleus in this process as 

                                with   ni  in nr/gram 

                                                                                    and  the reaction rate  rij in  nr/gram.s 

  

                  All reaction rates are equal so ni/nj = τi/τj  etc. 

 

 At T   2 x 10
7
 K, the equilibrium of the reaction cycle implies 

 

                                        
    35 yr 1600 yr     6600 yr 9x10

5
 yr      ~10

9
 yr 

      longest 

  

 In equilibrium:  ni(
14

N) / ni(
12

C)   140 

 The initial ‘cosmic’ composition is  n(
14

N) / n(
12

C)   0.27 

 So the 
14

N / 
12

C ratio increases drastically inside the star due to CNO-cycle. 

                   

Q? How long does it take this cycle to reach equilibrium? 

 

 The two main abundance effects of H → He via CNO-cycle:  

                  - H decreases and He increases   

 - 
12

C decreases and 
14

N increases  

Q?            Which one is faster? 
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10.5 He-fusion  = Triple α reaction:  at  T > 10
8
 K 

 
 4

He + 
4
He ⇆ 8Be            This is an equilibrium reaction ! 

 4
He + 

8
Be → 

12
C 

 3 
4
He → 

12
C  +  7.3 MeV           Mass defect  Δm/m=0.00065 

 

The first reaction is an equilibrium reaction that results a very small fraction of 

Be ions. The mean lifetime of 
8
Be ions  is only 3x10

-16
  sec! 

The second reaction is possible at T   10
8
 K because of a resonance in the  

He + Be reaction:  the cross section as function of energy shows a peak. 

 This was predicted by Fred Hoyle in 1954 based on the cosmic abundance of C!  

 

 The energy production rate of 3                   
         

 

Q? Why is        
 ?  Why is         

 ?  

                  What would the dependence be if He+He→ Be was not an equilibrium reaction. 

                   Argue on the basis of Fig 10.3 and the table of isotopes that this is an  

                   equibrium reaction. 

 

Q? What is the consequence of the very high T-dependence of the energy  

                  production? 

What does it imply for the mass of the Helium-burning core compared to that of 

the H-burning core of a star with a given initial mass? 

 

Q? Would you exist if  the 
12

C nucleus did not have a resonant energy level around 

8 MeV?  Explain.  

 

Towards the end of the He-fusion phase, when there is enough 
12

C, the 

following reaction occurs: 

 

 
12

C + 4He → 
16

O + 7.16 MeV  Δm/m = 0.00048 

 

10.6 C and O-fusion   
 

 The C+C fusion and the O+O fusion process has several branches: 

   

 at T >  6x10
8
 
 
K     at T > 1x10

9
 K 

 

 12
C + 

12
C  

24
Mg + γ   

16
O + 

16
O  

32
S + γ 

    
23

Mg + n      
31

S + n 

    
23

Na + p + 2.2 MeV*    
31

P + p + 7.7 MeV* 

    
20

Ne + α + 4.6 MeV*    
28

Si + α + 9.6 MeV* 

    
16

O + 2α      
24

Mg + 2α 

 * These are the most probable reactions that are the major source of energy. 
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10.7 Si-fusion and photo-disintegration  

 
 Above T   1.510

9 
K heavy nuclei can be destroyed by photons.  The average λ  

                  of photons (Wien’s laws λ   0.4/T cm) is  λ 3x10
-10  

cm. The average energy of  

                  photons is :                                              

 This destruction of heavy nuclei creates mixture of massive nuclei, 

                  such as Mg,  Si,  P,  S,  plus  p,  n,  α. 

                      The net reaction is 
28

Si + 
28
Si→

56
Fe, but it goes in many steps, creating also  

                  many other elements and isotopes. Most of the energy in these reactions is lost 

                  in the form of neutrinos that leave the star. 

 

The resulting equilibrium gives rise to the formation of Fe-group elements 

with stable nuclei: 
56

Fe, 
59

Co, 
58

Ni 

via  e.g.  
28

Si(α,γ)  
32

S(α,γ)  
36

Ar(α,γ)  
40

Ca(α,γ)  
44

Ti(α,γ) … 
56

Ni 

 

10.8 Summary of major reactions 
 

                      
                   

 

 

 

10.9 Formation of Heavy Elements: 

 slow (s) and rapid (r) neutron capture  
 

The photo-disintegration in the Si-fusion phase creates a mixture of neutrons,  

ions (protons, He-ions, C-ions etc.) and massive ions (Fe, Co, Ni). 

 

Because neutrons have no charge, they can penetrate (be captured by) ions, thus 

creating neutron-rich isotopes. The isotopes resulting from the bombardment  

by neutrons can be either stable or instable isotopes. The net result depends on 

the neutron-flux, i.e. on the time between successive neutron captures by an 

ion. 

The reaction rates and energy production for stellar nucleosynthesis have 

been compiled by the Lawrence Livermore National Laboratory and can 

be found at   http://www-phys.llnl.gov/Research/RRSN 
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10.9.1 Slow neutron capture in low mass stars (s-process) 
  

If the neutron capture rate is relatively “slow”, a particle can capture neutrons 

until it forms an instable isotope. This isotope will then suffer beta-decay 

(n → p + e
+
)  until it reaches a stable isotope .   

This process is shown in the figure below for a series of neutron captures, 

starting with a 
56

Fe nucleus. The isotope 
59

Fe is instable and will decay to 
59

Co. 

This ion can then start capturing neutrons again, until another instable isotope is 

formed. 

                                   

                         Fig 10.5   

                                         The formation  

                                      of  
59

Co  by  

                                                              slow neutron capture. 

 

 

 

 

In this way, a whole series of stable isotopes of heavy elements can be formed, 

depending on the stable isotope of the element that started the process. 

 

Typical elements formed by the s-process are: Zr, Sr, Ba, Pb. 

Their enhanced abundance in stellar photospheres of certain AGB stars 

shows that these stars must have gone through a phase that produced a 

large neutron flux. 

 

10.9.2 Rapid neutron capture in Supernova (r-process) 
 

If the neutron density is very high and the capture rate of the neutron is so high 

that the time between successive neutron captures is smaller than the typical 

decay time of instable ions, the instable isotopes have no time for beta-decay 

but keep capturing neutrons. In this way super-neutron-rich isotopes will be 

formed. When the neutron flux stops, e.g. because the matter is expelled in a 

supernova explosion, these neutron-rich isotopes will suffer a series of beta-

decays, until a stable isotope is reached. These final stable isotopes are called  

r-process elements. 
 

Typical r-process elements are: Eu, Au, Xe, Pt. 

They can only be formed in supernova explosions. 
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Both processes are shown schematically in an isotope-diagram, which shows on 

the vertical axis the charge (Z) and on the horizontal axis the number of 

neutrons (N) of the isotopes.  

 

                 
                       Fig 10.6  Schematic representation of  the  s and r process of neutron  

                       capture and the formation of neutron rich isotopes. The grey squares  

                       contain isotopes that can only be formed by the r-process. 

         

                       Depending on the location of an isotope in this diagram, actually depending  

                       on the stability of its neighbours, stable isotope can be formed via the  

                       r-process, the s-process or both. 

 

 

10.10 Consequences of fusion reactions for stellar evolution 
 

1. Each successive reaction has a higher Coulomb barrier, due to a higher 

charge of the nuclei.  So a higher Tc is needed → the core has to contract. 
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2. Each successive reaction has a steeper T-dependence. This implies that it 

will occur more concentrated in the core of the star, i.e. in a region that has 

less mass. 

 

3. Each successive reaction has a smaller Δm/m,  i.e. it produces less energy. 

So the reaction rate has to be higher and the fusion faster (more reactions 

per sec. gr) to provide luminosity L. 

 

4. At T>10
9
K the neutrinos carry away a larger and larger fraction of the 

energy. This also reduces the net energy production for the star and speeds 

up the evolution. 

 

 All these effects result in two significant factors concerning stellar evolution: 

 

  A. Because the mass taking part in each successive fusion process is smaller  

      than in the one before, the chemical evolution of the star will develop into  

                        an “onion-skin model”, with the most massive products (the latest) in the  

      center surrounded by concentric layers of less massive elements. 

  

  B. The lifetime of the successive evolution phases will be shorter and shorter. 

 

 

--------------------------------------------------------------------------------- 
H10.2. Homework 
 

The figure below shows a fraction of the isotope diagram of Pr  

(= Praesodymium) until Gd  (= Gadolinium). 

 Stable isotopes are indicated by enclosed squares. 

a. Show the path of slow-neutron capture, starting at 
 141

Pr     

b. Show a number of paths of rapid neutron capture, starting at the same 

isotope. 

c. Which isotopes in this diagram can only be made by the r-process? 

Give element and mass of isotopes. 

d. Which isotopes can be made only by the s-process? 

e. Which isotopes in this diagram can be made by both the r- and s-process? 

f. Which isotopes in this diagram cannot be made by either r- or s-process? 
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-------------------------------------------------------------------------------------------------------- 

 

 

 

10.11 Minimum  Core Mass for Ignition 
 

Each reaction requires a minimum temperature to be ignited (see Table in 10.8). 

 

The central temperature of a star can rise if the star (or rather “the core”) 

contracts.  We have derived before (from HE and ideal gas law) that we can 

estimate the central temperature of a star as 

 

   
   

 
 
  

 
   

 

In the case of a contracting  core, that we are considering here, (e.g. after H-

fusion) most of the central pressure is due to the mass of the core,  as the layers 

outside the core have a much lower density and contribute little to the pressure. 

Therefore we can estimate the central temperature in this case as 

 

    
    

 
 
   

  
     with      

  

  
 
   

    
    

 
    

   
   
   

  

  

 so          
   
   
   

 

 

So, when the core of a star with mass Mc contracts, its central temperature will 

increase with its central density as Tc ~ ρc
1/3 

 

This might suggest that a star can create any high Tc by contracting to small 

enough radius. However this is not the case, because the star may become 

degenerate before it reaches the required ignition temperature Ti and then the 

contraction stops. (Degenerate stars do not contract, unless mass is added). 

So: to reach the ignition temperature of the next fusion reaction, the star 

must avoid degeneracy. 
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 The temperature limit for electron degeneracy depends on density: as T ~   
   

 

 (Sec. 5.5 :  Fig 5.5 and Homework 5.1) 

 

 Degeneracy is prevented if Pideal gas > Pel. degen. 

 

                         
 

    
         

  
  

  
 
   

    
  
 

 
   
  

  
    

  

  
 
   

      

 

 

      Q?        Why does this equation  contain  both     and     ?  

 

 

      

 Fig 10.7   

Schematic evolution of         

the central Tc and ρc  of   

contracting cores of 

various masses.  The 

contraction stops when 

the core becomes 

degenerate. This point is  

indicated  by circles.  

 

 

   

 

 

So: to avoid degeneracy before Tign is reached, the star must have a minimum 

mass, (or rather a minimum mass of the contracting core). 

 

Combining these equations, we find that the mass of a contracting core that 

reaches a temperature Tign and avoid degeneracy must be higher than 
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                  Fig. 10.7.  The systematic evolution tracks of stars of different mass in the  

                  (log   , log   ) –diagram.  The left figure shows the regions of the different  

                  equations of state. The tilted thin lines in the right figure represent the   

                  evolution  of the central parameters for stars of 0.1 to 100 Mʘ . The thick nearly  

                  horizontal lines indicate the temperature and density range of the central fusion  

                  processes. (OP fig. 7.3) 

  

                      
                 Notice that stars of 0.1 Mʘ do not reach H-fusion, Stars of 1 Mʘ  barely reach  

                 He-fusion. Stars of M   8 Mʘ  reach all fusion phases.    

                 Once the center of a star becomes degenerate, it can no longer contract, so the  

                 density reaches it upperlimit.  Its density can increase a little bit, when the  

                 degenerate core becomes more massive due to fusion in the shell surrounding  

                 the degenerate core, as we will see later.  (Degenerate stars decrease in size and  

                 increase in density when their mass increases.)  

 

  

 

 ------------------------------------------------------------------------------------------------------------- 

  

  H 10.3  Homework 
                      

                    Suppose that the He-fusion requires a minimum core mass of about 0.3 Msun. .  

                             What would be the minimum core mass  for the next fusion phases ?  

                    (see Sec 10.8) 

 

------------------------------------------------------------------------------------------------------------- 
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11. Calculating Stellar Structure and Evolution 
 

11.1 Assumptions 
 

1. Star is spherically symmetric 

- Physical quantities vary only in radial direction: P(r), ρ(r), T(r), etc. 

- Ignore effects of rotation and     fields? When is this allowed? 

 

2. Star is in hydrostatic equilibrium 

- When is this assumption justified, timescale? 

 

3. Energy sources are 

- Gravitational energy 

- Thermonuclear energy 

- Internal (thermal) energy (important for white dwarfs) 

 

4. Energy transport mechanisms 

- Radiation 

- Convection 

- Conduction (white dwarfs) 

 

5. Chemical composition 

- Newly formed stars have homogenous composition 

- Assume initial composition (from surface spectrum) 

 X = Mass fraction of H 

 Y = Mass fraction of He 

 Z = Rest, mainly C, N, O 

- Follow composition changes through the star as function of time 

 

------------------------------------------------------------------------------------------------------------- 

H11.1. Homework 
 

 Stellar Rotation 

- Calculate the rotation speed of a star for which the centrifugal force would 

reduce gravity at equator by 30% and 80% 

- Compare these values with the observed mean rotation velocities 

- Do this for the following stars: 

a. Mainsequence star like sun 

b. AGB Star 

c.  Mainsequence O-star 

d. White dwarf 

 

----------------------------------------------------------------------------------------------------------- 
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11.2 Equations of Stellar Structure     (OP 6) 

 
    in r                                     in m = M(r)  

    Euler coordinates                  Lagrange coordinates 

 

Mass continuity  
  

  
         

  

  
 

 

     
 

 

Hydrost equilibrium  
  

  
  

   

  
   

  

  
  

  

    
 

 

Energy generation*  
  

  
            

   

  
  

  

  
      

   

  
 

 

Energy transport   
  

  
  

 

   
 
  

  
 

    
  

  

  
  

 

   
 
 

  
 

       
 

 by radiation 

 or 

 by convection  
  

  
 
     

   
 
 

 
 
  

  
  

  

  
 
     

   
 
 

 
 
  

  
 

 

 

 

 

Equation of state  P =  Pgas + Prad  =  Prad + Pe + Pion 

   

                                                      Prad = 
 

 
T

4
 

                       or      
       

     (electr. degen.) 

                     
 

Absorption coefficient                            
     

                        

 

Nuclear energy production        
             depend on the reaction 

                                                    The term      in the energy generation describes the loss 

                                                of energy by escaping neutrinos 

                                                      

 

Composition   X(m), Y(m), Z(m)   or    Xi(m) with  i = 1 …  all isotopes 

 

 

* The entropy term  –Tds/dt expresses the energy generated by contraction (–Tds/dt > 0) or 

lost by expansion (–Tds/dt < 0) with        
 

 
  . 

If Tds/dt = 0, the star is in thermal equilibrium. 
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                 Remarks and questions 
 

 These structure equations describe either  

 T, P, L, ρ, m as function of r (Euler) 

  or  

 T, P, L, m, r as function of m (Lagrange) 

 

 The Lagrangian equations can be derived from the Euler equations by using 

 
  

  
 
  

  
 
  

  
  with  

  

  
 

 

     
 

 

Q? Why is it more practical to use m as the free parameter than r? 

 

Q? How do we know which one of the two energy transport equations to use? 

 

 The term   
  

  
 in the equation of energy generation allows for the gain or loss 

of energy when a layer respectively contracts or expands on a Kelvin-

Helmholtz timescale. 

 

Q? How can we calculate this term, considering that we are calculating models in 

hydrostatic equilibrium? 

 

 The calculation of an evolutionary track consists of the calculation of a series of 

subsequent hydrostatic equilibrium (!) models, each with the chemical 

structure, calculated by using the reaction rates of the previous model and 

extrapolating it a certain time-step. 

Q? Which timesteps would you use? 

 

11.3 Boundary Conditions 
 

                Four boundaryconditions are needed for the 4 differential equations as f(m).  

 

 r (m = 0) = 0 

 

 L (m = 0) = 0 

 

 P (m = M*) = 0    actually,  this defines R*  (!)  

 

 T (m = M*) =            
         

    

 

 
or a better approximation if you fit an atmospheric model for the outer layers. 

 

 The problem is: 

 There are two boundary conditions at r = 0 and two conditions at r = R* 

So you cannot simply start integrating from the inside out or outside in. 
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11.4 Solving the structure equations 
 

 The Henyey method:  (see SC 3.2, p. 90-97) 

 

                   Introduce the general parameter  y
i  

with  i=1 to 4, and  define the parameters
 

                             
  y

1  
= r,  y

2 
 = P,  y

3 
 = L,  y

4 
=T

                  
         

                    Divide the star in a large number (N) of spherical shells with radii rj   with j=1  

                   to N.  Each parameter is at any radius is decribed by  y
i 

j   

                   For each shell with radius between rj  and rj+1  the differential equations  

                   that describe the stellar structure in Lagrangian coordinates can be written as 

 

                       
      

   
  

    
    

 

       
             

           
        

         
             

 

                    where  f  describes the dependence of the derivatives on the local parameters  

                    at  mass  j+1/2. This results in a set of equations of the type 

 

                          
     

    
    

 

       
            

           
        

         
   

 
       

                   

                    Suppose that a good first order model is available, then the equations of the  

                    next step can be written as a small correction to the first model.  For instance 

                    in Lagrange coordinates (with parameters  r, P, L and T as function of m)  the 

                    value of T  in the next iteration  (T2= T1 +ΔT) at a given value of m can be  

                    written as a correction  

                                ΔT = (dT/dr)Δr + (dT/dP)ΔP + (dT/dL)ΔL 

                     with all the terms dT/dP etc. given by the partial derivatives of the right hand  

                     side of the structure equations.  For instance,  dT/dP =μmH/kρ , if radiation  

                     pressure  can be ignored. The equation can also be written as 

                               ΔT - (dT/dr)Δr + (dT/dP)ΔP + (dT/dL)ΔL = 0 

                     and similar expressions for the other parameters.  A model agrees with the  

                     four structure differential equations at all values of m  if all differences  Δ are  

                     zero, i.e. at all values of m (=throughout the star) and for all parameters  

                     (r,P,L,T).  This set of  linear equations can therefore be written as a large  

                     matrix that can be solved with standard mathematical techniques. 

            

                    The solution of these equations then give the values of    
  , which are the  

                    radii, temperature, pressure and luminosity as function of m.  With these  

                    values, calculate the nuclear processes in each layer per second of time.  

                    Take a time step Δt and predict the abundances in each layer at time t+Δt.   
                  These new abundances   result in changes of the value of the function f  at  

                    each layer, that contain e.g. the opacity and reaction rates. Start the  process  

                    over again and calculate an equilibrium model at the next time step. Etc. Etc. 

   Q?            What time steps would you use? 
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11.5 Structure of Polytropic Stars :  P = Kρ
γ
 

 
In this case, the temperature does not enter at all into the equations and there 

are analytical solutions for certain values of γ. 

 

HE: 

 

   

  

 

  

  
       

 

  
 
  

 

  

  
     

  

  

                                               
  

  
      

           
 

  
 

  
 
  

 

  

  
        

 

 (NB: m = M(r) here) 

 

 Now use polytrope relation   P = Kρ
γ
   →   dP/dr  =  K γ ρ

γ-1 
dρ/dr  which gives 

 

 
 

  
 

  
          

  

  
                 

  

   
 
 

  
 

  
       

  

  
     

 

 Two practical substitutions: 

 

a. γ = 1 + 1/n  →  n = 1/(γ – 1) 

 

b. ρ = ρcθ
n
 θ is dimensionless 

 

 Gives 

 

  
       

     
         

 

  
 
 

  
     

  

  
      →     θ(r) 

 

 The term in square brackets  =  α
2
 = constant  α in cm!! 

                  

 

Q? Although θ is dimensionless, can you think of what it may describe in physical 

       terms? 

 Hint: ρ ~ θ
n
  →  θ ~ ρ

1/n
 

 

Q? What does an n = 0 → γ = ∞ model describe (in physical terms)? 

        n = ∞ → γ = 1 

 

Q?             What  is the range of θ ?  

 

 For mathematical reasons (to make the equation look nicer), define 

 r = αξ with ξ = dimensionless,  α in cm 
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 Then     
 

  
 
 

  
   

  

  
        → θ = f(n, ξ) 

 

 

 This is the Lane-Emden equation that describes the structure of polytropic  

                  stars. 

 

This equation describes the run of density, ρ(r) in a dimensionless form, with 

only one parameter: n = 1/(γ – 1). There are analytical solutions for n = 0, n = 1. 

For any other value of n the equation can easily be solved by numerically by 

computer. 

 

               

                      Fig 11.1   

                                       The density structure  

                          of two polytrope 

models.   

                                n=3 → γ = 4/3  

                       and  

                      n=1.5 →γ = 5/3. 

 

 

 

   

 

 

 

 

 

 

 

 

Polytropic models were historically important because they could be calculated 

(by hand and analytically) before the age of computers. Eddington ( ~1929) 

calculated the first polytropic model, assuming γ = 4/3, for the Sun and 

obtained the Mass-Luminosity relation for stars:    
  

 
    

 

---------------------------------------------------------------------------------- 

H11.2 Homework 

 
a. Explain to what types of stars do the polytrope models of n=1.5 and n=3 

correspond to? 

b. Explain in simple physical terms why a star with γ = 4/3 has a more 

concentrated density structure than a star with γ = 5/3. 
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12   Star formation 

 

12.1   The ISM 
 

 The interstellar medium consists of gas in different phases.  

 

                      Component          T(K)            n (cm
-3

)             nT          

                  Molecular clouds     10 – 20       10
3 

 - 10
6     

   10
4 

 - 10
7 
 

                  Cold neutral gas      50 – 100     20 – 50         10
3  

- 10
4 

                       
  Warm neutral gas     10

3  
- 10

4  
    0.2 -0.5      

    
10

3  
 

                  Warm ionized gas   10
4 

              0.1 – 1          10
3  

- 10
4  

  

                  Hot gas                    10
6 
– 10

7  
    10

-2 
 - 10

-4       
10

3 
 - 10

4 
  

 

                  The mean value of the pressure factor (nT)  in the galactic disk is   

                   nT ≈ 3 10
3 

  K.nr/cm
-3 

  
 

 In most cases these components are in pressure equilibrium. 

 Q? Give examples of cases where the  ISM is not in pressure equilibrium and     

                  explain why that is.     

   

  12.2  The Jeans mass for gravitational contraction 
 

Let us consider a spherical homogeneous cloud of mass M and  radius R with 

temperature T and density ρ. 

If the cloud is in hydrostatic equilibrium, i.e. neither expanding nor  

contracting,   the virial theorem applies : E kin  = -1/2 Epot  with  

 

 Ekin  = (3/2)  kT (M / μ mH )  

 

 and 

 

 Epot = -  
   

 
   

  

 
    = -  

 

 
 
   

 
      

 

 where we used   r =(      
      for a constant density medium.  Check this! 

If  -1/2 Epot  > Ekin  then gravity wins from the gas pressure and the cloud will  

contract.  This is the case if 

 

 

                                                                         where MJ  is the Jeans mass               

 

                    

 

 

 

M > MJ  ≡  
   

   
 . 
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Substitution of 

 

    
 

     
 
   

 
 

 
 
   

 

 

yields 

    
 

  
 
   

 
  

    
   
 

   

 
  

   
 

   

 

 

So 

 

       
  

   
 

   

    

 

The higher the temperature, the larger MJ, so the more massive a cloud should 

be in order to collapse.  That is why the clouds that contracted in the early 

Universe must have been very massive.  These formed the proto-globular 

clusters. 

 

Q? What is the typical Jeans mass of a cloud of neutral hydrogen with a density of 

n = 1cm
-3

 and T = 10
3
 K ? 

 

---------------------------------------------------------------------------------------------------------- 

H12.1   Homework 
a. Assume that the different components of the ISM are in pressure 

equilibrium.  What would be the Jeans mass of clouds forming out of 

1. cold neutral gas 

2. warm neutral gas 

3. warm ionized gas 

b. How is it possible that molecular clouds are not in pressure equilibrium 

with their surroundings? 

c. Giant molecular clouds have masses of order 10
5
 Mʘ.  Show that they are 

forming stars. 

---------------------------------------------------------------------------------- 
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12.3 The collapse of molecular clouds 

 
When a cloud has a mass higher than the Jeans mass it will collapse.  This will 

occur approximately on a free-fall timescale. 

 

        
 
 
            

 
        

 

If clouds did not have a cooling mechanism, they would contract adiabatically 

with temperature increasing as          .  Because the Jeans mass is  

       
       , its value would increase as the density increases.  At some 

point the Jeans mass would reach the cloud mass: i.e. the cloud would be in 

virial equilibrium.  At this moment the cloud would be in hydrostatic 

equilibrium and the contraction would stop. 

 

Fortunately, however, clouds do have a cooling mechanism.  (If not:  star 

formation would be extremely inefficient and we would not exist!) 

 

Clouds cool by radiative losses.  For this to be effective it has to emit IR 

photons, because the clouds are optically thick for UV and visual photons.  The 

main cooling agents in molecular clouds are: emission by molecules and 

emission by dust. 

 

Cooling by molecules 

 

Collisions between molecules in high density gas results in collisional 

excitation to higher rotation or vibration levels.  An excited molecule can fall 

back to a lower rotation or vibration level by emission of a photon (photo de-

excitation).  The dominant transitions are in the IR or sub-mm range, and these 

photons can leave the clouds because the cloud is optically thin at IR 

wavelengths.  So the net effect is: kinetic energy of  molecules is transferred 

into excitation which results via photo de-excitation in IR and sub-mm photons 

which escape.  This is a cooling mechanism. 

 

Cooling by dust 

 

If the density in a cloud is high and the kinetic temperature is low enough  

(T < 1200 K) dust may form.  Collisions with molecules and dust absorption of 

trapped photons (UV, optical or near-IR) heat dust grains.  Dust grains emit 

almost like blackbodies with a radiation temperature less than ~1000 K.  This 

results in a large IR flux that leaves the cloud.  Therefore molecular clouds are 

very strong IR emitters.  So the net effect is: kinetic energy of molecules and 

optical radiation is converted into IR radiation that leaves the cloud.  This is a 

cooling mechanism. 
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These cooling mechanisms prevent the adiabatic heating of a cloud when it 

collapses.  The potential energy gained by the contractions is immediately 

emitted, and so the collapse proceeds approximately isothermally.  The 

increasing density of isothermal clouds implies that the Jeans mass decreases, 

and substructures of the cloud can start to contract.  This results in a 

fragmentation of the original cloud that splits up into fragments that may split 

up again.  This fragmentation continues on a faster and faster timescale, 

because the free-fall timescale decreases as ~n 
-1/2

 as the fragments get denser.  

Eventually the density in the clumps will become so high that they become 

optically thick for IR radiation.  When that happens, the cooling mechanism is 

switched off and the collapse continues  adiabatically. This results in a T-rise 

and subsequent increase of the Jeans mass to the actual mass of the clump.  At 

this point the fragment reaches hydrostatic equilibrium.  Observers call these 

fragments clumps. 

 

 
Fig. 12.1  Schematic figure of the fragmentation of  a collapsing  

molecular cloud. As the cloud contracts almost isothermally, the Jeans 

                  mass decreases and fragments of the cloud start to contract, giving rise  

                  to a clumpy structure of the cloud. The clumps evolve into stars. 

 

The mass distribution of the clumps sets the initial mass function  (IMF) of the 

resulting stars.  Observations show that the IMF of the clumps has the same 

shape as the IMF of the stars except from a constant ratio.  So not all the mass 

of a clump ends up in the star.  (The stellar IMF will be discussed in Sect. 12.8)  

 

12.4 The end of the free-fall phase. 
 

At the end of the free-fall collapse, the center of a clump reaches equilibrium 

first, while the surrounding gas keeps falling onto the core.  From now on it is a 

proto-star.  Up to this point the temperature is so low and the density so high 

that hydrogen is in H2 molecules.  The energy gained by the contraction is used 

for the dissociation and later the ionization of H and He.  So the proto-star still 

has a cooling mechanism, which accelerates the contraction. 
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We can estimate the size of the clump when all  H2  is dissociated,  and H and 

He are both ionized by comparing the energy gained in the contraction with that 

needed for the dissociation and ionization. 

 

The energy needed for dissociation of an H2 molecule is           , and the 

ionization energy of an H atom is           , with 1 eV = 1.602 10
-12

 ergs.  

The total energy needed for dissociation and ionization of a cloud consisting of 

H2 molecules with composition  X = 0.7 and Y = 0.30 is 

 

     
 

  
 
 

 
               

   
 

  
            

 

  
      

 

This energy is provided by the contraction in the form of potential energy 

 

         
  

 

    
 

 

      
   

   

    
         

      
 

       
 

 

The constant A = 3/5 for a constant density cloud (see Sect 12.2).  During the 

collapse the proto-star will become centrally concentrated.  So the factor A=3/5 

is a lower limit.  Let us assume for simplicity that it is about a factor     

larger, so    . 

 

Although the collapsing cloud loses most of the gained energy in the form of 

far-IR photons,  a fraction f  of       is used for dissociation and ionization. 

                  Detailed calculations show that f ≈ 1/3. 

 

Equating the energy needed for dissociation and ionization       with           
we find that the proto-star is ionized when it reaches a radius of order 

 

              

 

We see that a proto-star of 1Mʘ has a radius of ~100 Rʘ at the end of the fast 

contraction and a star of 0.5 Mʘ has a radius of ~50 Rʘ.  The effective 

temperature of the stars is ~3000 K so the luminosities are ~10
3
 and  ~2 10

2
 Lʘ 

respectively. 

 

We can estimate the mean temperature inside the star by applying the virial 

theorem (because at the end of the collapse the star reaches H.E.) 

 
 

 

 

   
   

 

 

   

 
             

 

 

   

 
 
  

 
  

 

with      
 

   
        and      .  This gives          .  So fusion 

has not started yet.  
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The mean density of a protostar 1 Mʘ and 100 Rʘ is             .  At such 

low T and density, the absorption coefficient is very high.  See Fig 6.1.  This 

means that the energy transport by radiation would be very inefficient  and 

would require a high value of            (Sect 7.1)  So the star is almost 

completely convective according to the Schwarzschild criterium. 

 

So at the end of the fast contraction, when the star is ionized, it will be in 

hydrostatic equilibrium and fully convective. 

 

12.5 The contraction of a convective proto-star: 

              the descent along the Hayashi track 
 

When the dissociation and ionization of the star is complete, the star is in 

hydrostatic equilibrium.  The star does not have nuclear fusion yet, but it has a 

temperature gradient and so it radiates.  The star must contract to cover this 

energy loss.  

 

At this phase the star is fully convective.  We will show later (Section 15.5) that 

fully convective stars occupy a rather narrow vertical strip in the HRD at 

           .  This is called the Hayashi-line.  Fully convective stars will 

evolve almost vertically upward along the Hayashi line if they expand, because 

      
    with       constant, or downward if they contract. 

                  Proto-stars are contracting, so their luminosity decreases.   

                  This part of their evolution path in the HRD  is called the Hayashi track. 

 

Figure 12.2:   

Hayashi tracks for proto-stars 

of  0.25 < M /Mʘ  < 4 for 

X=0.70,  Y=0.28 and Z=0.02. 
Notice that the lines are 

approximately vertical,  at Teff 

≈3000 K,  but not exactly.  At 

       Teff decreases 

somewhat towards higher 

luminosity.   (OP Fig 9.3) 

 

 

 

 

 

 

 

As the star contracts, its gas temperature and density increases.  This results in a 

drastic decrease of κ and so the core of the star is no longer convective, but its 
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energy transport goes by radiation.  The star has developed a radiative core and 

does no longer evolve downward on the Hayashi track. 

 

We can estimate the radius of the proto-star at the end of the Hayashi track by 

assuming that the mean gas temperature should be of order a few 10
6
K,  

say 3 10
6  

K, to be in the range of              
      (see Fig 6.1).  Using 

the estimate of the mean temperature that we derived above, we see that this 

happens when the radius of the star has decreased by a factor 
     

     
      So the 

radius of a 1 Mʘ proto-star has gone down from ~ 100 Rʘ to ~ 2.0.  At this time 

the luminosity is           
           for a 1 Mʘ proto-star.  We can use 

this value to estimate the duration that the star needed for descending  the 

Hayashi track.  Because the star is contracting in hydrostatic equilibrium the 

timescale for contraction is given by 

 

          
      

 
     

    

      
 

 

Because the luminosity decreases drastically during the descent along the 

Hayashi track, we can take the logarithmic mean luminosity between the top 

and the bottom of the Hayashi track for   , assuming a constant Teff  so L~R
2
 

 

           
                               

                 
 

      Rʘ 

 

This gives               
  yrs for a 1 Mʘ protostar. 

 

So the descent along the Hayashi track of a proto-star of 1 Mʘ takes about 

2 million years, and          ~ M 
-1 

 . 

At the end of the Hayashi phase the star is no longer fully convective, but it 

is goes into radiative equilibrium. 

 

  

12.6      The contraction of a radiative pre-main sequence star:   

             from the Hayashi track to the main sequence. 

 
The proto-star in radiative equilibrium has not yet started nuclear fusion yet, so 

it will keep contracting to cover the loss of energy by radiation. However, 

because it is mostly in radiative equilibrium and hydrostatic equilibrium, it will 

roughly obey the mass luminosity relation. This means that the evolution track 

is now approximately horizontal. The star moves to the main sequence. This 

phase is called  the pre-main sequence phase.  

 

During this PMS contraction the convective region shrinks from inside out.  At 

the end of the Hayashi phase  it was still mostly convective, but when it reaches 
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the MS the massive stars have no more outer convection zone, whereas the stars 

less than about 1 Msun still have an outer convection zone on the MS.   

 

During the pre-main sequence contraction, the star keeps approximately the 

same luminosity as it had at the end of the Hayashi contraction phase.  

We can estimate the duration of this PMS contraction phase because we know 

the radius that the star has when it reaches the main sequence. 

                  At the end of the contraction phase, when H-fusion starts on the main sequence,  

                  the radius is approximately the main sequence radius. We will show later that  

                  the radius on the MS is  

 

                         
        

 

Substituting this into the expression for tPMS we find 

 

                        
   

 

    
        

 
       

  
       

  
            

      
    

 

where we used A   2,  L ~ M 
3.8 

 and  R~ M
 0.7 

.
  

This results in the following estimates 

Mʘ tPMS (estimated) tPMS (model) 

0.2 3 10
9 

7.3 10
8 

0.5 3 10
8
 2.1 10

8
 

1 6 10
7
 6.2 10

7
 

2 1 10
7
 2.9 10

6
 

4 2 10
6
 0.5 10

6
 

 

Notice that the simple estimate gives about the correct time except for the 

lowest mass  PMS. Notice also that these time scales are considerably longer 

than the duration of the contraction on the Hayashi track. 

 

 Q? Why is the phase of the Hayashi track much shorter than the PMS phase? 

 Q? Which effects could be responsible for the deviation between estimated and 

calculated lifetimes?  (Hint: see Fig 12.3) 

 

Figure 12.3 

 Calculated PMS tracks for stars in 

the range of 0.3 to 2.5Mʘ.  The 

dotted lines are isochrones of  10
5
,  

 3 10
5
, 5 10

5
, 10

6
, 5 10

6
 and 10

7
 yrs. 

The vertical lines near the 10
5
 yr 

isochrones indicate the region of the 

D-destruction. The lines  near the 10
6
 

yr isochrones, indicates the region of 

Li- destruction. (OP Fig 8.4) 
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Notice that the PMS lifetime decreases toward increasing mass.  This implies 

that in an HR-diagram or colour-magnitude diagram of a very young cluster, 

the more massive stars are already on the MS whereas the lower mass stars are 

still on the PMS contraction tracks. 

 

Low mass stars ( M  ≤ 2 Mʘ) on the radiative  contraction phase are called    T 

Tauri stars : pre-main sequence stars of types F,G,K with strong emission lines 

formed in an accretion disk around these stars. 

Higher mass stars ( M  ≥ 2 Mʘ) on the radiative  contraction phase are called    

Herbig Ae-Be stars : pre-main sequence stars of types A and B with strong 

emission lines formed in an accretion disk around these stars 

 

Figure 12.3 shows that PMS contraction track is not exactly horizontal in the 

HRD but that L increases, by about a factor 3.  Part of this is due to the 

decrease of κ as the star contracts and gets hotter  (L~M
3
/κ) and part is due to 

the continuous increase of the mass via the accretion disk.  

The tracks also show that a star that enters the MS and starts H-fusion will 

adjust its radius, luminosity and Teff slightly. This produces the little curl at the 

end of the PMS tracks. 

 

 

Fig 12.4  : Different phases of T Tauri stars  (OP fig 9.2, after Maeder) 
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12.7      The destruction of  Lithium and Deuterium  

 
             At temperature of about  10

6
 K, the small fraction of initial Deuterium (formed  

                  in the Big Bang) is destroyed by the reaction 

 

                  
2
H + 

1
H  → 

3
He + γ + 5.5 MeV 

 

                  This occurs when the stars is approximately on the 10
5
 yr isochrone. 

                  Some time later,  at a core temperature of about 2.5 10
6 

K, i.e. when the star is  

                  near the 10
6
 yr  isochrone,  Li is destroyed by the reaction chain 

 

                  
6
Li ( p, γ) 

7
Be (e

-
,ν) 

7
Li(p,γ) 

8
Be  → 2 

4
He + energy 

 

                  The stellar surface abundance of Li and D provides an important diagnostic tool 

                   for studying the formation of low mass stars. This is because Li is only  

                   depleted at the stellar surface if the convection was deep enough to include the  

                   Li-destruction zone.  Figure  12.3 shows that this is only the case in PMS stars  

                   of M< 1.4    !  At higher masses, the Li-destruction occurs when the star is  

                   no longer on the Hayashi track,  so convection does not affect the surface  

                   composition of Li. 

 

   -------------------------------------------------------------------------------------------------------- 

   H12.2  Homework 
                    Estimate  the duration of the Hayashi contraction phase and of the pre-main 

                    sequence contraction for stars of 0.1, 0.3, 1.0, 3, 10,  30 and 100    . 

                    Estimate de radii at the beginning and end of the Hayashi contraction phase 

                    and at the beginning and end of the pre-main sequence contraction. 

 

   H12.3   Homework 
                    Explain the difference in the Lithium surface abundance of stars on the main  

                    sequence that had Lithium destruction during the Hayashi contraction  

                    phase or during  the pre-main sequence contraction phase.   ---------------------

----------------------------------------------------------------------------------- 

 

12.8      Brown dwarfs 

 
We have seen that the collapse stops when a clump becomes optically thick for 

IR radiation.  This requires a minimum mass of about 0.01Mʘ.  So this sets  

the lower mass limit of stars at 0.01Mʘ 

We have also seen that the minimum mass for H-fusion is about 0.1 Mʘ  (Fig 

10.7). Detailed calculations show that the actual mass limit  is 0.08 Mʘ .   

Stars in the mass range of 0.08 < M < 0.01 Mʘ   do not reach H-fusion: 

these are the brown dwarfs. 
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12.9       Summary of Star formation 
 

------------------------------------------------------------------------------------------------------------- 

                  Collapse of cloud = free fall phase                                            τff  ~ 10
5 

- 10
7 

yr 

 

                       Cooling by molecules and dust IR radiation 

                       <T> low and about constant  

                       Fragmentation of cloud into clumps 

                       Start:  when cloud exceeds Jeans mass 

                       End : when H2 is dissociated and H ionized 

                                  Characteristic: <T> ~ 10
5
 K,    R/Rsun ~ 120 M/Msun  

 

                   Proto-star = pseudo-hydrostatic contraction                             τKH ~ 2 10
6
 yr 

 

                        Fully convective because of low <T> and high κ 

                        Teff    3000 K    constant 

                        Hayashi track : approximately  vertical in HRD 

                        Start:  when collapsing cloud is dissociated 

                                    Characteristic: R ~ 120 Rsun, Teff~3000 K,  L~10
3
 Lsun 

                        End : when <T>~10
6
 K → low κ → radiative equilibrium 

                                    Characteristic:  R~ 2.5 Rsun, Teff~3000 K,  L~0.5 Lsun 

 

                    Pre-main sequence = pseudo-hydrostatic contraction              τKH ~ 7 10
6
 yr         

 

                         Radiative equilibrium because of high <T> → low κ 

                         L about constant 

                         Approximately horizontal track in HRD 

                         Short phases of D-fusion and Li-fusion 

                         Start: when proto star reaches radiative equilibrium ( <T>~ 10
6
 K) 

                                   Characteristic: R ~ 2.5 Rsun, Teff~3000 K,  L~0.5 Lsun 

                         End : when H-fusion starts = on main sequence 

                                    Characteristic: R ~ 1 Rsun, Teff~6000 K,  L~1 Lsun 

 

------------------------------------------------------------------------------------------------------------ 

       

                  NB :  

1. The process starts when the mass of a cloud exceeds the Jeans mass 

2. The free-fall time of the cloud depends on the initial density as   τff ~ n
-1/2

 

3. The timescales and characteristics  of the proto-star and pre-main 

sequence star are given for a 1 Msun object.  

They are shorter for more massive objects. 
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12.10 The stellar IMF 
 

The initial mass function of the stars has been derived from observations of star 

clusters of different ages or field stars.  If field stars are used the number of 

stars in any magnitude limited sample must first be corrected for three effects: 

- the distance to which stars are observed, which depends on their absolute 

magnitude 

- the conversion of absolute magnitude to stellar mass 

- the evolutionary effect for late stages of evolution, to convert the present 

mass into the initial mass 

- the lifetime effect, to correct the number of stars in a certain evolutionary 

phase for the duration of that phase. 

                In this way the observed distribution of the stars as function apparent magnitude,  

                spectral type and evolutionary phase is converted into an initial mass function.   

                The best known modern IMFs are those of Kroupa (2001) and Chabrier (2003). 

Kroupa-IMF             
                 

                
                      

                 
                 

 

Chabrier-IMF              
 

 
                                     

                     
               

 

with the constants C and D  adjusted to match the different mass ranges. 

These two mass functions are very similar at         but deviate at smaller 

masses, where the Chabrier-IMF predict more/less stars than the Kroupa-IMF. 

 

  ---------------------------------------------------------------------------------------------------------- 

  H12.4    Homework 

a. Plot the two versions of the IMF  (Kroupa and Chabrier)  in terms of  

                log(N) dm versus log m,  in the range of 0.01 to 100   , both normalized at  

                M= 1   .  

b.  Which fraction of the mass is in the range of 0.01 - 0.1   ,  0.1 – 1   , 

                1-10   , and 10 – 100    in the two IMFs? 

c.  Which fraction of the number of stars is in these ranges? 

d.  Which fraction of the luminosity is in these regions? 

(assume for simplicity that L ~M
3 

e.  Which fraction of the visual (V-band) luminosity is in these regions? 

(adopt one characteristic value of Teff  on the MS  for each region, App B1) 

 ------------------------------------------------------------------------------------------------------------- 
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13. The Zero Age Main Sequence (ZAMS) 
        

13.1 Homology relations for Main Sequence Stars 
 

The properties of stars on the ZAMS can be understood on the basis of 

homology considerations, because they all have the same chemical composition 

throughout the star. Homologous stars are those that have the same density 

structure. So two stars are homologous if 
 

  
 

  
 
 

 
  
 
  

 

  
 
 

 
  
 
 

 

The values of ρc and R can be different for both stars but the structure of ρ/ρc as 

function r/R is the same. Because of hydrostatic equilibrium the same 

homology applies for T/Tc and P/Pc 

 

  
 

  
 
 

 
  
 
  

 

  
 
 

 
  
 
 and  

 

  
 
 

 
  
 
  

 

  
 
 

 
  
 
 

 

The stars differ only by their scaling factors ρc, Tc, Pc, M, R, L. With homology 

relations we can predict trends in stellar properties.  If we know R*, L* and Teff 

for a star of mass M (for instance from a stellar model or from an observed 

double-lined spectroscopic binary), we can predict R*, L* and Teff of other stars 

with a similar structure but different M. 

 

13.2 The Mass-Luminosity relation for ZAMS stars 
 

 We already derived the homology relations for Pc and Tc 

  

       
      and             

 

(Remember how this was derived!)  So the temperature structure of one ZAMS 

star will be about the same as that of another star as a function of r/R, except 

that it will differ by a factor (µM/R)2/( µM/R)1, as long as convection is not 

important. 

 

Using similar homology arguments we already derived the first approximation 

for the mass-luminosity relation of stars in radiative equilibrium. 

 

     
    

 
 

 

            We now consider this relation more closely for ZAMS stars. 
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 For massive stars, M>10 Mʘ , electron scattering is the dominant opacity. So 

 

                   

 

            This is independent of the metallicity, Z, but strongly dependent on He.  

            Ignoring the small fraction of Z, we find  (1+X)
-1

=(2-Y)
-1

  and  μ
4
=(2- 5Y/4)

-4. 
. 

            Massive stars convert a larger fraction of their H mass into He than low mass  

            stars, because of their convective cores.  

            This is important for understanding the brightening of stars during the  

             H-fusion phase, when the He content gradually increases.  

 

For ZAMS stars of  1 <M < 10 Mʘ, the main opacity source is free-free and 

bound-free absorption,  which is described by Kramer’s law:             
 

 Using          and          this gives 

            
 

  
                  , so 

 

                     

 

 We see that for stars with the same µ and Z, the M-L relation predicts 

              . We will see below that        with       so we predict 

 

                
 

i. This explains why the M-L relation of ZAMS stars is steeper in the region 

between 1 and 10 Mʘ  than for more massive stars. 

ii. It shows that stars with small metallicity, Z << 0.01, will be brighter than 

solar metallicity stars. This is a direct result of         and κ ~ Z  

iii. It explains the brightening during the H-fusion phase when Y increases. 

 

                   Fig 13.1  The predicted Mass Luminosity relation for ZAMS stars, based on  

                   detailed model calculations. The slope is steepest in the region 1 to 10 Mʘ.  and   

                   flattens to lower masses where convection plays a role  (CS Fig 5.11) 
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13.3 The Mass-Radius relation for ZAMS stars 
 

We can derive the M-R relation from the M-L relation if we can eliminate L. 

Since all ZAMS stars have H-fusion we can derive a homology relation based 

on the nuclear energy production.  

The energy production per gram.second  is         with     for the P-P 

chain and      for the CNO-cycle. The nuclear luminosity is given by 

 

                        
 

 
 

 

 with 

 

                                       
 

 Comparing the above expression for L with            we get 

 

 
      

    
   

    

 
 .     

 

           This yields an expression for R 

 

               
   

       
   

      
 

      
 

 For massive ZAMS stars, M>10 Mʘ,  where           ) and the H-fusion  

            goes by the CNO-cycle, so     ,  and κ=σe , so we find 

 

                                                        

 

For 1 < M < 10 Mʘ  ZAMS stars where H-fusion also goes by the CNO-cycle, 

so     , but κ is the Kramers opacity, we find  

 

                                             

 

We see that for M>10 Mʘ  ZAMS stars the radius scales with                   
for lower mass, 1 – 10 Mʘ  ZAMS stars the radius is almost independent of 

mass. 

   

13.4 The Mass-Teff relation for ZAMS stars 
 

The most interesting homology relation for ZAMS stars is the relation between 

M and Teff because that is plotted in HR-diagrams and CMDs. We can find the 

homology relation for Teff  by combining the predicted M-L and R-M relations 

using            
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 For massive ZAMS stars, M>10Mʘ, where κ = σe ,  we find 

 

        
                      

 

 For lower mass ZAMS stars, 1 < M < 10 Mʘ, we find 

 

         
                      

 

i. We see that Teff decreases with decreasing mass, (that is why the ZAMS 

goes to the right and downwards for decreasing mass), and that the decrease 

is a stronger function of M for stars  of 1-10 Mʘ than for 10-100 Mʘ . 

 

ii. These relations cannot be applied for stars with M < 1 Mʘ because of the 

influence of convection. 

 

iii. We see that for massive ZAMS stars Teff is rather insensitive to metallicity 

(Z), but for intermediate mass ZAMS stars a lower Z implies a higher Teff 

and a larger L.  

 

iv. This shows that Teff  increases for ZAMS stars of higher He abundance. 

This is important for understanding the globular clusters whose CMD 

shows multiple main sequences. 

 

So the ZAMS of low metallicity stars and the ZAMS of stars with higher 

initial (!)  He abundance are to the left and slightly upward compared to 

the ZAMS for solar metallicity stars. 

 

 

                

                          Fig 13.2  Schematic 

drawing of the effect of    

                              higher initial He or  

                  metal abundance on the 

location of the ZAMS  

                    in the HRD. 

 

 

 

 Remark 
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Note:   
It is not important that you know the formulae of the homology relations of Teff 

and R. But it is important that you understand the way in which these were 

derived, and the consequences for the location of the ZAMS in the HRD as a 

function of deviations from solar abundances, because this is important for 

understanding globular clusters.  

 

Summary of the homology relations for chemically homogeneous stars 

(ZAMS), derived from detailed stellar evolution models 

 

------------------------------------------------------------------------------------------ 

Process                              R                     Tc                ρc                  Pc ~ ρc Tc / μ 

____________________________________________________________ 

pp-chain        ν     4          M
+0.43

            μ
+1

 M
+0.57

      M
-0.3             

M
+0.27 

 

CNO-cycle    ν     18        μ
+2/3

 M
+0.81

    μ
+1/3

 M
+0.21

    μ
-2

 M
-1.4     

μ
-8/3

 M
-1.2 

---------------------------------------------------------------------------------------------------------------------------------------- 

 

------------------------------------------------------------------------------------------------------------- 

H13.1 Homework 
 

Calculate the displacement (in terms of          and      ) of stars 1, 3, 9, 20 

and 40 Mʘ on the ZAMS if 

i. the Helium abundance changes from Y = 0.28 to Y = 0.38 

ii. the metal abundance changes from Z = 0.02 to Z = 0.001 (which is the 

mean metallicity of galactic globular clusters)  

iii. Use the values of M, L, Teff from the models for solar metallicity  (from 

Appendix C2)  and plot the three ZAMS, based on stars of 1, 3, 9, 20, 20 

Mʘ, for 

  (a) solar abundance : X,Y,Z = 0.68, 0.30, 0.02 

  (b) increased Helium abundance: X,Y,Z = 0.58, 0.40, 0.02 

  (c) decreased metal abundance : X,Y,Z = 0.70, 0.30, 0.001 

------------------------------------------------------------------------------------------------------------- 

  



Astronomy 531 University of Washington Spring 2014 

 

 

 

       93 

14. Evolution During the Main Sequence Phase 
 

14.1 Nuclear Fusion as a Thermostat 
 

During the MS phase H is converted into He in the core. The temperature in the 

core can only change very little, because fusion is a strong function of T with         

ϵ ~ T
4
 for P-P chain and ~ T

18
 for the CNO-cycle. Even a small change in T 

would result in a large change in ϵ and in L, which is not allowed by the HE-

requirement. So nuclear fusion acts like a thermostat in the center of the star. 

 

14.2 Changes in L and R 
 

If Tc remains constant during the MS-phase but µc increases, then Pc/ρc ~ Tc/µc 

must decrease. So either Pc decreases or ρc increases as more H is converted 

into He. It turns out that both effects occur. (Verify this with models; e.g. 

Schaller et al 1992 AA Supl 96, 269.) 

 

In H.E. the central pressure is set by the weight of the layers above. 

 So, as the central pressure decreases during the MS phase the outer layers of the  

            star have to expand.  

            So when μ increases in the center the radius has to increases.    
                  At the same time the luminosity increases (µ-effect). 

                  (NB: The luminosity does not increase as steeply as L~μ
4
,   because that was  

                   derived for homogeneous chemical composition, which is not the case when  

                   the star  is fusing H in the core. In fact L increases less steeply.)              

 

                   Because R
2
 increases more than L, the effective temperature            

       

                   decreases. This implies that the stars move up and to the right in the HRD  

                   during H-fusion in the core. 

 

           

 

              Fig 14.1  

 

  Evolution tracks during H-fusion.  

 The locations of the Zero Age Main 

Sequence (ZAMS) and the Terminal  

                     Age of the Main Sequence (TAMS)      

  are indicated. Symbols indicate 

binary observations.  
(based on OP Fig 8.9) 
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14.3 Changes in the chemical profile 
 

Stars with M ≥ 1.2 Mʘ fuse H via the CNO-cycle, which is very sensitive to T. 

Therefore the nuclear energy is generated in a very small volume. This means 

that the energy flux is very high in and around the core of these stars. If that 

energy was transported by radiation, it would require a steep temperature 

gradient.  So the central regions of these stars become convective. 
 

 Core convection has two effects. 

i. Convection brings fresh H into the center from all over the convective 

region so more H can be fused. This extends the MS lifetime of these 

stars. 

ii. The chemical profile of MS-stars with M > 1.2 Mʘ is flat in the center, 

whereas it is peaked for lower mass stars. As the H-fraction in the core 

decreases, the convection zone shrinks in mass.   

  Q?  Why?  

                  Hint: remember what the effect of a  μ-gradient is on the convection  criterium.  

 

This implies that the chemical profile is flat in a decreasing fraction of the 

mass. Both effects result in a chemical profile that evolves like sketched below. 

 

 
                   

 Fig 14.2   Changes in the chemical profile during the MS-phase of stars with 

                  and without convective cores. The dashed line is the distribution at the end of  

                  the MS phase TAMS. 

------------------------------------------------------------------------------------------------------------- 

H14.1. Homework 
Verify that the MS lifetimes of stars M > 1.2 Mʘ  increase in the way we expect 

for stars with convective cores.  Do this for stars with Z = 0.02 (solar)  and 

 M = 120, 25, 5, 1 and 0.8 Mʘ. 

  Use the tables in Appendic C2 where qcc=  mass fraction contained in the  

       convective core at t = 0.  (Data from Schaller et al. 1992, AA Supl 96, 269) 

       Compare your result with the data in the lower part of the table, and comment 

       and explain  the differences. 

------------------------------------------------------------------------------------------------ 
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14.4      The MS evolution of the Sun 

 
             The two figures below show the distibutions of abundances as well as the  

                  distributions of r(m), T(m),  P(m), ρ(m) and L(m) for the solar model now 

                  (t=4.5 Gyr:  Fig 14.3) and at the TAMS (t=12.3 Gyr: Fig 14.4).    

                   (Figs from CO)    

                   Study these figures and try to understand the basic features: 

                   in particular the changes in L(r) and abundances (r).     (X12 = 
12

C,  X14 =
14

N) 

 

                     
 

                      
                     Fig 14.3  and 14.4  

                    The internal structure of a 1 Mʘ star at t=4.5 Gyr (= Sun now) (fig 14.3) 

                     and t=12.3 Gyr (at the end of the H-fusion phase = TAMS) (fig 14.4). 
                     (Figs. from CO)  
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14.5    Convective Overshooting in the MS phase 
 

We have argued before that where-ever there is convection, there may be 

convective overshooting. This produces chemical mixing over a larger region 

than predicted by the Schwarzschild or Ledoux criterium.   

  

 Overshooting has two effects (similar to normal convection) 

i. It extends the MS lifetime 

ii. It increases L because  <μ> increases in a larger region. 

 

The observed colour-magnitude diagrams of star clusters provide evidence for 

overshooting. 

 

 

              
 

                  Fig. 14.5  Comparison between the observed CMD of two open clusters 

                  NGC752 (left) and IC4651 (right) , both  ≈  1.5 Gyr old, with predicted 

                  isochrones with overshooting (OVS = full lines) and without (STD = dashed 

                  lines. (OP Fig 8.11) 

 

 

The isochrones calculated with overshooting (full lines) fit the observations 

better than those without overshooting (dashed lines). From studies like this it is 

concluded that in the mass range of 1.5 to 8 Mʘ the overshooting parameter is 

         so the overshooting length is           . 
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14.6 The end of the MS phase: core contraction 
 

When H-fusion stops in the core, the core has to contract to compensate the 

radiative losses. 

 

In stars of M > 1.2 Mʘ the whole core contracts “suddenly” because H is 

exhausted in the whole core, due to convection. (see the Fig 14.2).  

In stars of M < 1.2 Mʘ the contraction is more gradual, because the chemical 

profile allows H-fusion to keep going gradually.  

 

As a result of this difference, stars with M > 1.2 Mʘ contract as a whole.  

This reduces the stellar radius, which produces a small leftward loop in the 

HRD at the end of the H-fusion phase. This contraction  ends when the region 

around the He-core has reached a sufficiently high T and density to start H-

fusion in a shell around the He-core. 

 

Stars with M < 1.2 Mʘ do not contract as a whole because the H-fusion is 

extinguished more gradually. Meanwhile the core contracts (just like in stars 

with M>1.2 Mʘ ) but this slower contraction does not result in a decrease of 

the outer radius.  So these stars do not make a leftward ward loop in the HRD. 

        

                  Check this with the tracks in Appendix E.     
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15 . Principles of Post-Main Sequence Evolution  
 

15.1 Definition of zones and regions 
 

For discussing the evolution of stars it is useful to distinguish several regions in 

the star. 

 

a. The core: is where fusion is going on or has gone on. 

b. The shell zone: is where fusion occurs in a shell or in shells around the 

core. 

c. The envelope: is the region between the shell zone and the atmosphere. 

d. The atmosphere: is the region where the optical depth for most of the 

radiation is less than     . Radiation can escape from this layer. 

e. The chromospheres and corona: is the region above the atmosphere 

where the temperature rises far above the effective temperature. This is 

typically for stars with convective envelopes which generate shocks in the 

upper atmosphere, so only cool stars have chromospheres and coronae. 

f. The wind: is the region from which gas escapes with a typical speed of a 

few times the escape speed.  We will discuss wind processes later. 

Cool stars (like the Sun) have winds driven by gas pressure due to the high 

temperature of the coronal gas.  

Very cool stars (like AGB-stars) have winds driven by radiation pressure on 

dust-grains.  

Hot stars (O, B, and Wolf-Rayet stars) have winds driven by radiation 

pressure on ions. 

     
15.2 The evolution of the core 
 

We have shown before  (10.11) that during the evolution of a star in radiative 

and hydrostatic equilibrium ,  supported by gas pressure,  the central 

temperature and density are related via  

  

    
  

 
   

   
   
   

 

 

 where  Mc  is the mass of the core that contracts.  This is the mass that was  

                  enriched by the previous evolution phase.  

                  (Remember the way this expression  was derived!) 

So the evolution of Tc and ρc in the center of a star, due to nuclear burning and 

contraction,  proceeds roughly along a line of 

  

                                    



Astronomy 531 University of Washington Spring 2014 

 

 

 

       99 

 

In the most massive stars,  M > 50 Mʘ, radiation pressure dominates the gas 

pressure in supporting the star. In that case 

 

                       
        

  

  
    

      
   
     independent of μc,   so 

 

                               
 

We can compare these tracks in the Tc ,ρc diagram with the location of the 

fusion zones, and with the regions of the different equations of state, as a 

function of the initial stellar mass. (The regions for the different EOS wer 

shown in Fig 10.7) 

 This is shown in the figure below.  

 

                     Fig 15.1   

                  Schematic evolution of stars in  

                                      the  (ρc, Tc)- diagram with the  

                        regions of nuclear fusion in 

                                   the center indicated. 

                                                

                                           (Same as fig  10.7,   

                         OP Fig 7.3) 

 

 

 

 

 

 

 

 

Q? Check that the temperatures of the fusion phases agree with those in Table in 

10.8.  If not, what could be the reason? 

Q?             Why does the line for H-fusion show a kink? 

 

                  Caution: the figure describes the evolution of the star in the (ρc, Tc)-diagram  

                  as a function of the total mass. We have seen above that this is not the correct 

parameter to describe the central evolution, because the relation depends on the 

                  mass of the core that contracts and not on the initial total stellar mass. 

 

From the figure we can learn several interesting facts about the evolution of 

stars of different masses. 
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The picture above  gives a reasonably good description and explanation of the 

internal evolution of stars.  However, detailed evolutionary calculations show 

that a few modifications have to be made. 

The most important one is the use of the  total initial stellar mass  to describe 

the location of the tracks in the          diagram: 

 

- When a star contracts on a Kelvin-Helmholtz timescale at the end of a 

fusion phase, not the whole star contracts, but only the central region which 

took part in the previous fusion phase. 

(For instance, at the end of H-fusion the newly formed He-core contracts.) 

This means that the constant (     ) of the       relation is smaller.  

Therefore the criterium whether or not a star reaches a certain fusion phase 

is better described by its “core-mass”  than by its initial mass. 

 

- Stars may lose a substantial fraction of their mass due to stellar winds. 

For high mass stars of M > 30 Mʘ the mass loss is significant during their 

whole life. For low mass stars it is only important in the later phases, after 

the H-fusion phase. (We will discuss stellar winds and how it affects the 

evolution later). 

 

 

A. Stars with M   0.1 Mʘ do not reach H-fusion. 

      Detailed calculations show that the real limit is 0.08 Mʘ. 

Q? Can you think of a reason why the simple estimate, based on scaling the 

solar model to estimate Tc and    fails? 

 (Stars which never reach H-fusion are “brown dwarfs”). 

 

B. Stars with              reach H-fusion but not He-fusion. 

      They end up as He-rich degenerate white dwarfs. 

 

C. Stars with           reach He-fusion and then become C-rich WDs. 

 

D. The figure suggests that stars with         would go through C-

fusion and then enter the region of Extreme Relativistic WDs. Since ER 

stars only exist if they have exactly the Chandrasekhar mass, they will 

collapse. 

However, we will see below that most (or maybe all) stars in this mass 

range suffer very high mass loss near the end of their life (i.e. in the AGB-

phase). This results in a strong reduction of the stellar mass, which 

prevents the stars from reaching the ER-state.  

 

E. Stars with       do not become degenerate and go through all fusion 

phases. 

 

Taking into account these two effects, it turns out that  

- the minimum required core mass for He-fusion is 0.3 Mʘ. 

- the minimum required core mass for C-fusion is  1.1 Mʘ. 
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15.3 Isothermal Cores 
 

At the end of the H-fusion phase the fusion in the core has stopped so the core 

does not produce energy, which implies        for      (Rc is the radius 

of the core and Mc is the mass in that core). If           then         

in the core. So the core has become isothermal. 

 

An isothermal core in hydrostatic equilibrium must have a steep density 

gradient because for constant temperature               . In other words: 

the density gradient has to provide the pressure gradient without the help of the 

temperature gradient. It turns out that an isothermal core can only exist if its 

mass is smaller than a certain fraction of the total mass of the star. 

                  We will derive this in a way that shows resemblance to the derivation of the    

                  Virial Theorem. 

 

Hydrostatic Equilibrium 
  

  
  

  

  
  

 

 Multiplication by      and integration over the core, i.e. 0 < r < Rc, gives 

 

         
  

 
  

  

 
        

  

 
     

    
   

 

  
  with    . 

 

 Partial integration of the left hand term (as in Virial Theorem derivation) gives 

 

        
  

 
          

            
  

 
 

 

        
            

    

 
         
  

 
     

        
    

  
    

 

where we have used the isothermal condition           with    = constant. 

Notice that the first right-hand term is not zero as in the derivation of the Virial 

Theorem, because here we do not integrate up to R*, where P(R*) = 0, but up to 

Rc. Here        is the pressure at the outer boundary of the isothemal core. 

 

So     
       

    

  
     

   
 

  
 

 

This gives a relation between the pressure at the boundary of the core and its 

radius, for a given core mass Mc and a given temperature Tc. 

 

      
 

  

   

  

  

  
  

 

  

   
 

  
   

 

This expression is of the type              if           . It has a 

maximum at         where       
        . 
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                  Substituting A and B gives the maximum pressure that an isothermal core can  

                  support. 

 

            
  
 

  
   

  

 

So the “weight” of the envelope on top of the core should be less than this 

maximum value, otherwise the core cannot be stable. But the higher the core 

mass, the smaller this pressure! 

 

  Q?           Explain in physical terms why there is a maximum for P(Rc). 

 

Let us assume that the isothermal core contains only a small fraction of the total 

stellar mass M, and that the radius of that star is much larger than Rc. Then the 

pressure at the bottom of the envelope (which is at Rc) can be estimated in the 

same way as the estimate of the central pressure of any star in H.E.:  

           
    . 

 

The temperature at the bottom of the envelope is the same as the core 

temperature Tc with 

 

      
    

 
 
  

 
   or     

 

 
   

   

     
   where      is μ in the envelope. 

 

 Substitution of this into the expression          gives 

  

            
  
 

    
   

 

 

 The isothermal core can only be stable if                
     . 

 This gives 

 

 
  

 
    

    

  
 
 

 with C = 0.37 

 

 This is called the Schönberg-Chandrasekhar limit for isothermal cores. 

 

So at the end of H-fusion in the core, the remaining isothermal Helium core, 

with       , can only be stable if its core has an estimated  mass of 

 

 
  

 
      

    

    
 
 

           

 

                 Here we assumed that the envelope is not chemically enriched at all.  In reality     

                 the lower part of the envelope has also increased He-abundance, so        6 .  
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                 If that is taken into account then the   

                 Schönberg-Chandrasekhar limit for isothermal cores is Mc/M < 0.10 

 

If the core is less massive than this, then the subsequent H-shell fusion occurs 

around a stable Helium core. If the core is more massive than this, the 

isothermal Helium core cannot carry the weight of the shell plus envelope, so it 

will contract during the H-fusion in a shell around it. 

 

Contraction of the He-core will create a temperature gradient that produces 

extra gas pressure and helps to stabilize the core. So the core is no longer 

isothermal.  The temperature gradient also results in an energy flux from the 

core. So once the core starts to contract it has to keep doing so until He-fusion 

starts in the core. This contraction occurs on the Kelvin-Helmholtz timescale of 

the core. 

      
   

 

  
              

 

Q? Why  L - Lshell   instead of L ? 

 

Q? Estimate the timescale for a post-MS star of 3 Mʘ that has a core of 0.45 Mʘ 

and gets 10% of its luminosity from core-contraction. Compare it with the MS-

life of this star. 

 

Q? Which one of the stars is more likely to have a contracting  core during H-shell 

burning:  a star of 10 Mʘ or a star of 2 Mʘ? Why? 

  

-------------------------------------------------------------------------------- 

H15.1 Homework                                 

  

Use the model data in the appendix of Schaller et al (1992, AA Supl 96, 269) to 

determine the initial masses of stars of solar composition that create a stable 

isothermal He-core at the end of the MS phase, and of those that have a He-

core that is larger than the Schönberg-Chandrasekhar limit and has  to 

contract. 

Hint:  The moment of core contraction can be seen in the HRD by the short 

leftward motion at the end of the MS phase. In Schaller’s models this is 

characterized by the increase in Teff  just before X=0 in the center. The mass of 

the convective core, qcc, at that moment gives the mass of the He core at the end 

of the MS-phase. 

 

H15.2   Homework 
Explain in physical! terms (words) why there is a limit to the pressure of the 

envelope that an isothermal core can support. 

  ---------------------------------------------------------------------------------------------------------- 
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15.4 The mirror principle of stars with shell burning 
 

 Whenever a star has a shell burning source, it appears to act like a mirror: 

 

  

 

      

 

     

                                                                                     

    

               

              

    

    

    

                                  

                  Fig 15.4  The mirror action of shell fusion: if the core contracts the envelope  

                  expands and vice-versa. 

 

There are two ways to explain this: by using the virial argument or using the 

pressure argument. In both arguments the thermostatic behavior of a fusion 

shell plays a key role (see section 14.1). 

 

 The Virial argument 

 
The fusion efficiency is very sensitive to T. Therefore, as the core contracts the 

fusion shell can hardly contract with it, because otherwise it would increase its 

T and its energy production. 

So the shell has to remain at about the same distance and the same T. So the 

“mean T” of the star will not change very much. If the mean T does not change, 

then the total kinetic (thermal) energy will not change. The virial theorem then 

implies that the total potential energy should also remain about constant. 

So if the core contracts (more negative Epot) then the envelope must expand 

(less negative Epot), and vice versa. 

 

 The pressure argument 
 

For the star to remain in thermal equilibrium, the energy generation by fusion 

must remain constant. So if the core contracts and the shell follows it, the 

temperature in the fusion shell will rise. This would imply a higher energy 

generation rate unless the density in the shell decreases (remember:        ). 
But as the density decreases, at about the constant temperature of the fusion-

reaction, the pressure in the shell decreases. This implies that the pressure of the 

envelope on top of the shell must decrease. So the envelope must expand. 

core contraction  → envelope expansion 

 

core expansion  → envelope contraction 

 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       105 

 

 N.B.  

The argument for the mirror principle does not apply to stars with degenerate 

cores. In these stars the shell is right on top of the degenerate core. So if the 

degenerate core shrinks the shell has to contract with it and reaches a higher P 

and T. This results in an increasing luminosity. 

 

Q? Why would the degenerate core contract? 

 

 We conclude that: 

1. Fusion shells act like mirrors in the expansion or contraction of the 

core and the envelope. This is due to the thermostatic action of fusion 

shells. 

2. The contraction of a non-degenerate core surrounded by a fusion shell 

will result in an expansion of the star. 

3. The contraction of a degenerate core surrounded by a fusion shell will 

result in an increase in luminosity. 
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15.5 The Hayashi-Line of Fully Convective Stars  
 

Fully convective stars occupy a narrow, almost vertical line at low temperature, 

in the HRD diagram if it is plotted as L versus Teff.  We have seen that this 

applies to fully convective pre-MS stars. But it also applies to fully convective 

Red Giants and AGB stars. They are all on about the same line in the HRD, the 

Hayashi line after the Japanese astronomer who explained this observed effect 

in the early sixties.  It is the result of two effects in stellar structure theory: 

- convective stars have extended envelopes and so their Teff is low. 

- at low temperatures of T < 3000 K the opacity in the photosphere drops 

steeply towards lower Teff. 

 

We will derive the physical principle of the Hayashi-line by showing what 

happens if a (nearly isothermal) photosphere is attached on top of the envelope 

of a fully convective star. The star is supposed to be convective up to the layer 

where    , i.e. the photosphere. We will call this radius R1 (which of course 

is very similar to the stellar radius R). 

 

15.5.1 The pressure at R1, derived from the interior, P(R1)
int

 
 

 A fully convective star obeys the polytropic relation:          
Since all convective stars are homologous (same     ,       and       if these 

are expressed in function of r/R*) we can derive how K depends on the mass or 

radius of the star by realizing that the central pressure is proportional to 

 

      
   

  
 and        

   
 with         

  

 H.E. polytrope   homology 

 

So the scaling constant K of the polytropic index depends on the stellar 

parameters as 

 

  
  

  
       

  

  
  

 

    
  

  
 
  

    
                     

 

The polytrope expression for P is valid at all  depth, also at the top of the 

convection zone at R1, so 

 

  
       

   
              

   
  

 

15.5.2 The pressure at R1, derived from the atmosphere, P(R1)
phot

 
 

Remember that the temperature structure of a simple (grey) photosphere is 

given by 
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This implies that the photosphere is almost isothermal because:  

0.84 < T /Teff < 1.06  if      .  Therefore we adopt for simplicity that the 

photosphere is isothermal with T=T1. 

The pressure then decreases exponentially with height as 

 
  

  
 
   

 

  

  
  

  

  
              

    

  
  

  

  
 

   
 

  

   
 

 

 
  

 

 So the density distribution in the isothermal photosphere is       
 
    
  .

 The density scale height is    
   

  
         

              

  Using this expression for ρ, we can now find the pressure P1 at  τ= 1, 

                   which we want to  compare with the pressure P1 that was derived from the 

                   polytropic interior. 

                   

 The optical depth τ = 1 is defined by 

 

        
 

  
             

 
      

   
 

  
          

 

 where we used a mean constant value for          . 
 

So the density ρ1 at τ = 1 is                        
    

and the pressure at R1  = R (τ=1) due to the photosphere is   

 

   
    

                 
  

  
 
 

 
 

 

15.5.3 Match the pressure of Interior to Photosphere at τ = 1 

 
                We now have two expression for the pressure  P1, one derived for the top 

                   of the polytropic interior, and one derived for the bottom of the photosphere. 

                   These two should be equal. The  value of     
    depends on the density  

                    at the top of the interior, for which we derived an expression  from the  

                    photosphere   ρ1 ~ GM/TR
2
κ  (with M, T, R and κ  at τ =1). 

                    Substitutions  yields 

 

   
    

   
                                                    

 

 Up to now we have not specified the energy source, nor the luminosity. 

(NB: The luminosity does not have to obey the M-L relation that we derived 

earlier, because that was derived under the assumption that energy transport is 

by radiation, and in these stars it is by convection!) 
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The luminosity is set by  R1 and T1 :     L ~ R
2
 T

4
 

This gives the luminosity of fully convective stars: 

 

                   

 

15.5.4 The absorption coefficient   in the photosphere of cool stars 

 
 For very cool stars (Teff < 6000) H

-
 is the dominant atmospheric opacity. with 

 

       
            with          

         if ρ and T are in cgs units. 

 

We can write this as           
    with a   1 and b   9 

                  This opacity is very small: at T = 3000 and ρ = 10
-10

 g/cm
3
, which are the  

                  approximate values in an atmosphere of an AGB star,  the opacity is only 5.10
-5

  

                  cm
2
/g.  (Compare this with κ   0.3 cm

2
/g in the interior of ionized stars). 

 

Substituting this into the expression for L, we find (after long but not difficult 

algebra) 

 

 log L = A log Teff + B log M + constant 

 

 with 

 

   
        

    
    

 

   
    

    
   

 

 We see that for fully convective stars 

 

              
        or           

              

 

This means that Teff is “almost” independent of L and M, so Hayashi line is 

almost vertical in the HRD when the luminosity is plotted versus log Teff, 

and lines of constant M are very close together. 

 

 N.B. 

i. Detailed evolutionary models show that the Hayashi line bends a little bit to 

the right (towards cooler temperatures) at L > 10
2
 Lʘ (see Figure 12.2) 

 

ii. In the colour-magnitude diagram the Hayashi line of fully convective stars 

bends so much stronger to the right, e.g. in B-V colour,  because this colour 

depends very strongly on Teff. For cool stars (see Figure 1.4). 
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15.5.5 Intuitive Explanation for Hayashi Line 
 

We have derived the location of the Hayashi line from  mathematical 

expressions. Can we also understand the location of the Hayashi line based on 

simple physical insight? 

 

Consider the two main ingredients: 

 

i. Fully convective stars are geometrically extended and so: their effective 

temperature will be small. 

 

ii. The opacity, or absorption coefficient, at low temperatures is due to H
-
. This 

opacity is very small (e.g.        at                ) and 

decreases very steeply with decreasing temperature T
9
. 

 

Suppose a very cool star of constant of constant L would increase its size, then 

the photospheric T would decrease and the outer layers would become (almost) 

transparent. So even if the star’s size would increase, we could look deeper and 

deeper into the star up to the depth where τ = 1 is reached at almost constant 

Teff. 

This is the main reason why the Hayashi line is approximately vertical in HRD. 

 

The argument does not apply to stars which contain dust in their envelope. For 

such stars (e.g. stars at the tip of the AGB with dense cold winds and class 0 

TTauri stars, see Fig 12.4) the main opacity is dust opacity, which is large and 

has a weak dependence on T. So these stars  radiate as black bodies with the 

temperature of the dust and the radius of the dusty wind. 
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16. Stellar Winds and Mass Loss 
 

The history of stellar winds, their observations and theories and their effects on 

the stellar evolution have been described in “Introduction to Stellar Winds” 

(Lamers and Cassinelli 1999, Cambridge University Press, ISBN0-521-59565-

7). I will refer to this book as “ISW.” 

 

Mass loss by stellar winds play a key role in the late evolution phases of low 

mass stars and throughout the whole evolution of massive stars. There are 

basically four types of stellar winds: 

 

a. Coronal winds are driven by gas pressure due to the high temperatures 

of stellar coronae. This mechanism is responsible for the winds of cool 

stars on the main sequence like the Sun and possibly also red giants. 

(ISW 3 and 5) 

b. Dust driven winds are driven by radiation pressure on dust grains. This 

mechanism also needs stellar pulsations to be efficient. It produces the 

winds of pulsating red giants and AGB stars. (ISW 7) 

c. Line driven winds of hot stars are driven by radiation pressure on 

highly ionized abundant atoms. This mechanism is responsible for the 

winds of hot luminous stars: O and B-type main sequence stars, hot 

giants and hot supergiants, Wolf-Rayet stars and central stars of 

planetary nebulae. (ISW8) 

d. Alfven wave driven winds are driven by magnetic waves.  The 

magnetic fieldlines are rooted in the photosphere. Horizontal motions of 

the footpoints (due to convective cells) produce waves of  the  fieldlines 

(like a hanging string that is shaken at the top).  These wave 

produce an outward pressure gradient that can accelerate ionized gas. 

This mechanism is (probably) responsible for the mass loss from red 

giants. (ISW 10) 

 

Mass loss rates are expressed in units of 1Mʘ/yr = 6.3x10
25

 g/s. A typical mass 

loss rate of 10
-6

 Mʘ/yr corresponds to the loss of about an earth-mass per year. 

 

16.1 Coronal Winds and the critical point 
  

We describe the coronal wind theory for a star that is surrounded by an 

isothermal corona of temperature Tc. We assume that the wind is stationary 

and spherical and we ignore magnetic effects. 

 

For a stationary wind the mass loss rate is given by the equation of mass 

conservation 

 

                with              
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For a stationary wind the time derivatives are zero, so 

 
       

  
 
       

  
 
       

  
 
  

  
   

  

  
     

  

  
  

 

Newton’s law                with the forces due to the gas pressure 

gradient and gravity can be written as an equation of motion 

 

   
  

  
  

   

  
   

  

  
 or  

  

  
 
   

  
 
 

 

  

  
    

 

where   
   

 
 is the gas pressure. For an isothermal corona the last term is 

 
 

 

  

  
 
  

 
 
 

 

  

  
 
  

 

  

  
  

with the isothermal sound speed             
 

Using the equation of mass conservation,           , we can express 
 

 

  

  
  

 

 

  

  
 
 

 
  

 

Substitute this into the equation of motion and find 

 
  

  
 
   

  
     

 

 

  

  
 
 

 
     

 

or 
 

 

  

  
  

   

 
 
   

  
          

 

This is a critical equation which has a numerator and a denominator that both 

can go through 0. The numerator is negative close to the star, where 

      
         and increases outwards as GM/r

2
 decreases faster than a

2
/r. 

The denominator is also negative close to the star where the wind speed is still 

very small at the photosphere and increases outwards as the wind accelerates. 

This means that close to the star the velocity gradient is positive: v(r) increases. 

 

Q: What happens if the denominator reaches 0 when the numerator is still 

negative? 

Q: What happens if the numerator reaches 0 when the denominator is still 

negative? 

 

 The only solution with a velocity gradient that is positive at all distances 

requires that both the numerator and the denominator flip signs at the same 

distance. This so-called critical solution thus requires that 
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                  Fig 16.1  The topology of the solutions of the (critical) momentum equation of  

                  an isothermal wind. The critical point is rcrit = rc=GM/2a
2
 , where a is the  

                  isothermal sound speed  a
2
=  T / μ.  (ISW Fig 3.01)  

 

 

                 This shows that the wind reaches the sound speed at the critical point 

         
  

 

So we know v and rc at critical point. If we can derive the density there, we 

know the mass loss rate. It turns out that the density structure in the subsonic 

region, v < a, is almost exactly the same as that of a hydrostatic atmosphere. 

For a hydrostatic isothermal atmosphere 
 

 

  

  
 
   

  
   or 

  

 

  

  
  

   

  
  

 

The solution of this equation gives the density structure in the subsonic region 

 

             
      

  
 
  

 
   with scale height    

  

  
 
  

 

  
 

   
 

      with r0 is the bottom of the corona. 

 

This gives an estimate of the density at the critical point rc. Substituting this in 

the equation of mass conservation gives mass loss rate of coronal winds of 

 

       
          

       

  
 
  

  
  with          

   

 

where we have assumed that the bottom of the corona is at      . 
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Quantitatively 

               
    

  

   
 
   

 
  

     
  

  

  
 
 

 
  

  
 
 

        
  

  
      

 

with 
  

  
                  

        
     

 

Notice that the dominant factor in the expression of    is the exponential 

function. If       then the exponent is    and the mass loss rate is very 

small. 

 

The table below (ISW Table 3.1) gives the predicted mass loss rates of coronal 

winds for main sequence stars and giants of 1 and 10 Mʘ for different coronal 

temperatures if      
         at the bottom of the corona. 

 

 
 

Notice that: 

1. For a star of 1 Mʘ and 1 Rʘ and Tc = 1. 10
6
K the coronal mass loss rate is 

10 
-14

 Mʘ/yr, in good agreement with the observed rate of 2. 10
-14

 Mʘ/yr. 

This is so small that it does not play a role in the MS evolution of the sun 

because         . 
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2. A red giant of 1 Mʘ and 100 Rʘ has a coronal mass loss rate of ~ 10
-7

 Mʘ/yr 

if the coronal temperature is only 3*10
4
K and it increases strongly with 

increasing Tc. 

 

3. Appreciable mass loss rates of M > 10
-8

 Mʘ/yr are only obtained for coronal 

winds which reach their critical point rc at less than about 10 scale heights 

above the photosphere. 

 

Q: Why is     very strongly dependent on           ? 

 

 

16.2 Dust Driven Winds of Pulsating Stars (ISW Chapter 7) 

 

Cool stars can have dust in their outer envelopes. Dust is an efficient absorber 

of radiation so the absorption of stellar photons by dust grains produces transfer 

momentum from the photons to the dust grains (= radiation pressure) which are 

then accelerated outwards. The dust grains collide with the gas atoms and 

molecules and drag these outward as well, producing a stellar wind. 

 

16.2.1 Dust Opacity and Radiation Pressure (ISW 7.3) 

 
 Observations show that the average dust/gas ratio (by mass) is about 0.01. 

Q: Why is it so low? 

 

Suppose that the dust grains are spherical with a mean radius a and a mean 

density ρd. For icy particles         
  and for silicates (sand) 

         
 . For simplicity we adopt a mean value of          

 . So 1 

gram of gas contains        
          dust grains, with a total cross 

section     
 . The total absorption coefficient of one gram of dusty gas 

 

       
   

       

    
        per gram of gas 

 

where        is the efficiency factor for absorption and scattering and the 

mean particle radius is        . 

 

The wind can be driven by dust if the radiation pressure force exceeds gravity 

 
  

     
 
   

  
           

      

 
            

 

  
    

 

  
  

 

This is the case for stars with M> 10 Msun  i.e. for massive Red Giants, and for  

Red Supergiants and AGB stars. 
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16.2.2 The Temperature of Dust 

 
The temperature of dust can easily be calculated by radiative equilibrium: the 

amount of energy absorbed per second = the emitted radiation. 

 

The energy absorbed by a grain per second is       
     

 

    
 with 

       
      

  

       where L is the stellar luminosity and r is the distance of the grain from the star. 

 

The energy radiated per second (black body) is         
       

  

Where Qem is the emission efficiency with Qabs   Qem. 

 

Equating these two gives the dust temperature at distance r from the star 

 

        
  

  
 
   

  

 

NB: 

Td is independent of the size of the dust grains.  So this equation can also be 

used to estimate the mean temperature of planets (with a small correction for 

their reflection by clouds or ice). 

Q? Check this for the Earth. 

 

Dust sublimates if it gets hotter than the condensation temperature, Tcond, which 

is about 1200 to 1500 K for different types of dust.  This means that dust can 

form only at 

 
 

  
 
 

 
 
    

     
 
 

  

 

                  For a cool stars of             dust can only form at   r   2   , i.e. about      
                  above the surface. 

 

16.2.3 The problem of the scale height and the role of pulsation 

 
We have seen above that all cool stars with L/Lsun > 10

3 
M/Msun  could in 

principle drive a wind by radiation pressure on dust grains.  However, we have 

also seen that dust can only form at ~2R*.  This creates a serious problem, 

because if there is no wind the density at a distance of 2R* is so low that dust 

formation at 2R* would be extremely inefficient: so if there is no wind, dust 

cannot form and if dust cannot form there is no wind. 
 

We can express this problem in terms of photospheric scale height.  We have 

seen in the discussion of the coronal wind that the density decrease in the 

subsonic structure (where v < a and  frad < GM/r
2
)  is given by 
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  with       

     

  
  

 

Apply this to a Red Giant with M   1Msun, R = 40Rsun, L = 100Lsun,  

Teff = 3000K, g = 20 cm/s
2
, μ = 1,     = 0.18Rsun = 0.004R*, and a photospheric 

density of ρo   10
-12

 g/cm
3
.  We see that at a distance of r = 2R* which is 250 Ho 

above the photosphere, the density is 10
-54

 smaller than the photospheric 

density!!  Even for an AGB star of 1Msun and R = 300Rsun  dust can only form 

at 2R*,  i.e. 2.5    above the photosphere,  where ρ   10
-6
ρo      10

-18
 g/cm

3
 and

  

dust would form very slowly. 

 

The only way in which the density at 2R* could be increased drastically is by 

increasing the density scale height    in the region between R* and 2R*.  Here 

is where pulsation comes in! 

 

Many RGs and AGB stars are pulsating.  Pulsation tosses the outer layers up, 

giving rise to a slower density decrease than in a hydrostatic atmosphere.  This 

is depicted in Fig. 16.2   

 

                     
Fig 16.2  The density structure in the atmosphere, ρ(r),  of a pulsating AGB star 

of R*
 
= 250Rsun  for different pulsation amplitudes of 1, 2, 4 and 6 km/s.  The 

structure is ragged because it shows ρ(r) at one particular time in the pulsation 

cycle. The straight line is the density structure if the star would not pulsate. 

Notice the much slower decrease in density due to pulsation, which is 

equivalent to a large increase in the density scaleheight. (Fig ISW 7.6, based on 

Bowen, 1988)  
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The figures below show the motions of the outer layers above the photosphere 

(at r > R* = 2x10
13

cm) without dust (left) and with dust (right).  

 

   
Fig 16.3  The motions of the outer layers above the photosphere (at r > R* = 

2x10
13

cm)  of  a pulsating star without dust (left) and with dust (right). The 

right figure shows that once the matter has reached a distance of 2R* it is 

accelerated outward by radiation pressure on dust and moves outward. 
(Fig ISW 7.5,  from Bowen 1988) 

 

Fig. 16.4 shows empirical evidence that the mass loss of Mira variables is 

related to their pulsation. 

                       
Fig. 16.4  The mass loss rates of Mira variables increases with increasing 

pulsation periods, until it saturates at a mass loss rate of about 10
-4 

Msun/yr. 
(ISW Fig. 2.26, based on Vassiliades and Wood 1993) 
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16.3 Line-driven winds of hot stars  (ISW Chapter 8) 

 
Line driven winds are due to the transfer of the momentum of the stellar 

radiation to the gas above the photosphere. 

Hot stars with          emit most of their light in the UV. This is also 

where most of the abundant elements, mainly C, N, O, Si, S, Fe, etc. have their 

strongest spectral lines, i.e. where the photons are most easily absorbed by 

electron transitions in the ions. These specific ions are accelerated by the 

repeated absorption or scattering of photons. Hydrogen does not produce any 

radiation pressure because it is ionized and has no electron transitions. Helium 

can add a little bit of the radiation pressure, but He II has few absorption lines 

and the strongest ones are very far in the UV where the stellar flux is low. So 

only a small fraction of all ions are accelerated. However, because of the 

frequent interactions of these ions with protons and electrons (Coulomb 

interaction of charged particles), all the gas is dragged along. 

 

16.3.1 A few simple estimates: the momentum of the wind 
 

Suppose a particular abundant ion in the wind of an O-star, i.e. a C IV ion, has 

one very strong absorption line at a wavelength λ0 that corresponds to the peak 

of the Planck function for that star. Assume that it is so strong that the line is 

optically thick and absorbs or scatters all photons at its wavelength. How much 

mass loss can one absorption line produce? 

 

                   
Fig. 16.5.  Upper figure: the velocity of a stellar wind increases from 0 at the 

photosphere to v∞ at large distance. Lower figure: the flux absorbed by one 

strong spectral line of rest frequency ν0, near the peak of the stellar energy 

distribution. All photons emitted by the photosphere in the  shaded  area are 

absorbed or scattered in the wind. (ISW Fig 8.2) 
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Suppose that the wind of that star has a velocity loss that increases from V = 0 

at the photosphere to V∞ at large distances. Due to the Doppler shift,  those ions 

absorbs all photons in the frequency range    to      
  

 
 . So the total energy 

absorbed per second is 

 

          
      

     
  
 
 

  
       with               

 

The momentum of photons is      so the total momentum transferred from 

the radiation into the wind per second is       . The momentum of a gram of 

gas that leaves the star with a velocity         .  So the total momentum 

loss in the wind per second is      . 

For a wind that is driven by the transfer of momentum from stellar photons to 

the gas,      must be equal to the radiative momentum put into the wind 

per second, so 

 

                                          
   

 

At the peak of the Planck function           and so we find that one strong 

spectral line can drive mass loss rate of 

 

                 per optically thick spectral line. 

 

For a hot star of         this corresponds to a mass loss rate of about 

            .  If the spectrum contains Neff  optically thick spectral lines, 

with        
 , then the mass loss rate of that star is 

 

           
                       

 

which is about the mass loss rate of luminous hot stars! 

If the spectrum is completely covered with optically thick absorption lines then 

all the photons from the star are absorbed or scattered in the wind and the 

momentum of the wind is equal to the momentum of the radiation. This 

provides and upper limit for a radiation driven wind of 

 

                         

 

The wind velocities of hot stars are typically 2 or 3 times the escape velocity at 

the photosphere:            

For a typical O main sequence star this is about             . So the 

maximum radiation driven mass loss of an O-star of          is  

            and for a star of       it is           . These values are close 

to the observed mass loss rates of massive O and B supergiants. 
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It is interesting to compare the kinetic energy loss of the wind,        
   , 

with the energy loss by stellar radiation, L. For the       star mentioned 

above: 

 
  
   

 
 
       

 

  
 
  

  
    

 

Even if all photons from the star are absorbed and scattered in the wind, the 

wind carries away only a small fraction of the luminosity.  The fact that the 

observed mass loss rates of luminous stars are close to the expected maximum 

values in case the winds are driven by radiation pressure,  but the maximum 

observed  stellar wind energy is very much smaller than the luminosity of the 

star, shows that these  winds are driven by the momentum of the stellar 

radiation and not by its energy. 

 

Remarks 

i. The first scattering (absorption + re-emission) of a photon that leaves the 

star is most efficient for transferring its outward directed momentum, 

because of its outward direction. The second or third scattering of the 

photon is less efficient in this respect, because it will come from a random 

direction. 

ii. In the estimates above we have assumed that the outward directed 

momentum of a stellar photon can be used only once. In reality, if there are 

many spectral lines, and the photons are scattered multiple times, the total 

momentum transfer can be increased by at most a factor of   3. So some 

hot stars have mass loss rates slightly higher than the value of       
calculated above. 

 

16.3.2 The lines that drive the winds of hot stars 

 
Fig. 16.6  The wavelength distribution of the spectral lines that drive the winds 

of luminous hot stars. (ISW Fig 8.10) 
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Fig 16.6 shows the fraction of the stellar radiation that is scattered or absorbed 

in the winds of stars of different Teff.   

Notice the enormous numbers of spectral lines that can be used for momentum 

transfer. At  Teff  < 30 000K   the driving is mainly done by absorption lines of 

Fe-group elements (Fe, Ni, Co). At Teff > 30000K the ions of C, N and O are 

mainly responsible for the mass loss. 

 

16.3.3 Mass loss rates and wind velocities of line driven winds 
 

The winds from massive stars are due to radiation pressure onto the outer 

atmospheres of stars due to a multitude (~10
5
) of optically thick and thin 

spectral lines in the UV. Both observations and theory show that the mass loss 

can be described by a formula of the type 

 

          
   
                           

 

with the left side in units of [Mʘ/yr   x   1000 km/s   x   sqrt(Rʘ)] 

 

where A = -6.74 and v∞ ~ 2.6 vesc if Teff > 21000K 

  B = +1.51  v∞ ~ 1.3 vesc if 10000 < Teff < 20000K 

  C = +0.85  v∞ ~ 0.7 vesc if 8000 < Teff < 10000K 

 

(A more elaborate and more accurate description is given in Sect. 16.4). 

Fig. 16.7 shows the observed terminal velocities of the winds of early type 

supergiants.  Notice that the ratio v∞/ vesc is different for different stellar 

temperatures ranges. The transitions between these regimes are called  

bi-stability jumps.  

 

             
Fig 16.7: The observed relation between v∞ and  vesc  for the line driven winds 

of  hot luminous stars. (ISW Fig 2.20, after Lamers et al. 1995) 
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The physical reasons for this expression comes from the theory of line driven 

winds as first described by Castor, Abbott and Klein (1975, ApJ, 195, 157), 

called CAK theory, which predicts (ISW 8.7.1) 

      

       
 

    
   

   

   with                 and                    

 

                  where        is the Eddingtion factor (see Sect 8.3) that corrects the stellar mass  

                  for radiation pressure  by electron scattering,  and 

 

                    
     

 

where α is a factor, 0 < α < 1, that describes the ratio between the contribution 

by strong (optically thick) spectral lines and weak (optically thin) spectral lines 

to the line radiation pressure. 

 

So the momentum loss of the wind is 

 

        
     

    
 
   

  
 

 
    

  

 

It turns out that            so     
 

 
 
 

 
   so the mass drops out of the 

expression for the wind momentum. This is nice because the mass of a star is 

usually much less well known than L, Ṁ, or v∞. So we can expect 

 

                

 

                

 

where D is called “modified Wind momentum” (Kudrtizki et al 1995). 

Observations show that this relation is so tight, that it can be used to derive 

luminosities of massive stars, if the mass loss rates and wind velocities are  

derived from spectra.  Stars with known distance and luminosities can be used 

to determine the proportionality constant.   

 
Fig 16.8   

The observed modified wind 

momentum versus L relation. 

Grey bands are observations 

of Galactic, LMC and SMC 

stars by Mokiem et al. (2007).  

Dashed lines show the 

predictions by Vink et al. 

(2001), discussed in Sect 16.4. 
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16.3.4     Mass loss rates of massive main sequence stars 
 

M 30 50 80 100 

log L/Lʘ 5.15 5.58 5.97 6.16 

log Ṁ -6.51 -5.86 -5.27 -4.99 

                 

                 A few typical values for main sequence stars. These rates are so high that  

                 massive stars lose about 10 to 20% of their initial  mass during the MS phase!        

 Q?           Check this! 

  

 

16.4 Mass loss formulae used for stellar evolution 
 

16.4.1 Massive O, B, A stars 
 

Vink  et al. (2001, AA 369, 572)  predicted mass loss rates of luminous hot 

stars of L>3 10
4
 Lsun, based on the line driven wind theory, using Monte Carlo 

simulations to follow the track of a large number (>10
5
) of photons in the wind 

and derive their momentum transfer from photons to the gas. These predictions 

fit the observations very well. They derived formula of the type: 

 

log Ṁ = A+ B log (L/10
5
 Lsun) +C log (M/30 Msun) + D log (0.5 v∞/vesc)  

                 + E log (Teff/Tref) + F (log (Teff/Tref))
2
 + G log (Z/ Zsun) 

  

with Ṁ in Msun/yr,   Zsun=0.02  and  v∞/vesc  as described in  sect 16.3.3. 

 

                  For  the temperature ranges  of 27500 < Teff < 50000  and  

                 12500 < Teff < 22500 the constants are respectively 

 

                   A  = -6.697                          -6.688 

                   B  = +2.194                         +2.210 

                   C  = -1.313                          -1.339 

                   D  = -1.226                          -1.601 

                   Tref = 40 000                       20 000                    

                   E  = + 0.933                        +1.07    

                   F  = -10.92                             0 

                   G  = +0.85                            +0.85 

               

These formulae are now used in most  stellar evolution codes. 

Fig 16.8 shows a comparison between these predictions and observations for 

luminous hot stars in the Galaxy, the LMC and the SMC. 
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16.4.2 Wolf-Rayet stars 

 

Wolf-Rayet stars are late stages of massive stars that have almost completely 

lost their H-rich envelope. (They will be discussed later) 

Nugis and Lamers (2000, AA 360, 227) derived an expression for the mass loss 

of Wolf-Rayet stars from the observations of 64 C-rich and N-rich (WN) stars. 

 

             
 

   
                       where Y is the Helium mass fraction 

 

16.4.3 Non-pulsating Red supergiants: the Reimers-relation 

 
Reimers (1975, Mem. Soc Roy Sci Liege 6° Serie 8, 369) derived mass loss 

rates of 6 red giants and supergiants with 4 < M < 18 Msun, 10
3
 < L < 10

5 
Lsun, 

40 < R < 600 Rsun and 3500 < Teff < 5000 K.  He derived the empirical relation 

 

               
 

  
 
 

  
 
  
 
          

 

where ηR is a correction factor that was later added to adjust this to more 

observations and different types of late type stars. This is the famous Reimers 

relation, which is often used in evolution codes to describe the mass loss rates 

of cool stars.   

Q?             What would      be if the Reimers relation was used to predict    of the Sun? 

Notice that  this empirical relation implies that     

 

                         
      . 

 

Winds of cool supergiants and AGB stars have        . So the Reimers 

relation implies that for these stars a fixed fraction of the stellar luminosity  

is used to provide the potential energy of the winds, that allows the gas to 

escape the gravity of the star.  (This is different from the case of the hot stars 

where the momentum of the wind scaled with the momentum of the radiation). 

 

16.4.4 Pulsating Miras and AGB stars 
 

Vassilidadis and Wood (1993, ApJ 413, 641) derived empirically from the 

infrared of dusty winds  (see Fig 16.4) 

 

                   P(days) if P < 600 days and M < 2.5 Mʘ 

                    {P(days)     
 

  
     } 

  if P < 600 days and M > 2.5 Mʘ 

                                 if P > 600 days  
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                  all with 

 

                                              

 

                  The terminal velocity of these winds is about 5 to 20 km/s. 

 

-----------------------------------------------------------------------------------------------------------

H16.1. Homework 
a. Calculate the mass loss rate at the ZAMS and TAMS of stars of 

20, 40, 60, 120 Msun,  and solar metallicity, using Schallers (1992, AA Sup 

96, 269)  stellar data and Vink’s equations. 

Hint: The TAMS is the point in the models where X is “almost” 0 in the 

center, and the star makes a short left loop in the HRD. 

Take the mean value and estimate the fraction of mass that is lost from 

these stars during the Main Sequence.  

Compare this with the mass that is lost in Schallers models and realize that 

Schaller calculated his models before Vink made his predictions. 

b. Do the same for 60 Msun  models of LMC and SMC metallicity and compare 

it with the solar metallicity. 

c. Calculate the mass loss rates of non-pulsating red giants (H-shell burning) 

of 1, 2 and 5 Mʘ Lsun  at (a) the end of the MS phase = beginning of the red 

sub-giant branch, (b) when the star reaches the Hayashi limit and (c) when 

the star has reached the tip of the RGB.  Use Reimers formula η=1  

Use the duration of the sub-giant phase and the RGB in Table F for solar 

metallicity to estimate the total amount of mass that is lost during H-shell 

fusion. 

d. Calculate the mass loss rates of pulsating cool stars of 1, 2 and  5 Mʘ. 

using the data for AGB stars from Appendix F.  

 

H16.2    Homework 
              Calculate the mass loss rates for a variety of O, B and A stars with   

                   L>3 10
4 

Lsun,  for which the Vink et al. (2001) predictions apply, 

                   using stellar data from Appendix B1 to B3. 

                   Show that these predictions support the empirical statement that  

                   D ~ L
1/α   

and  derive the empirical value of α. 

                    

----------------------------------------------------------------------------------------------------------- 
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17.      Mass ranges of Post-MS Evolution 
 

For describing the evolution of stars it is useful to separate five ranges of their 

intial mass 

 

a. Mi < 0.08 Mʘ: these stars do not reach H-fusion and are brown dwarfs. 

 

b. 0.08 < Mi < 0.8 Mʘ: these stars go through H-fusion, but will not reach 

He-fusion, so they end as He-rich white dwarfs. 

The evolution of these stars is not discussed in these lectures because 

their MS lifetime is longer than the Hubble time. 

(He-rich WDs can be formed in close binaries with mass transfer or 

mass stripping if the stars were initially M   0.8 Mʘ.) 

 

c. 0.8 < Mi   2 Mʘ: in these stars the fusion of Helium is ignited in a 

degenerate core so the stars go through a Helium flash and end as CO-

rich white dwarfs. 

 

d. 2   Mi   8 Mʘ: in these stars the Helium fusion is ignited in a  

non-degenerate core so they go through a Helium flash, but they do not 

make it to C-fusion because of insufficient core mass or due to severe 

mass loss in the AGB phase. 

 

e. Mi   8 Mʘ: these stars can go through all evolution phases and end 

their lives as  supernovae. 

 

The mass limits between these regions have been derived from stellar evolution 

models compared with observations. The mass limits between the regions are 

not very strict because they depend on metallicity, mass loss and  overshooting. 

For instance, more overshooting will give more massive cores; and lower mass 

loss rates on the AGB will allow stars initially less massive than 8 Mʘ to reach 

C-fusion. 

 

In addition, the evolution of close binaries may involve mass transfer (accretion 

or stripping) or severe mass loss (non-conservative mass transfer) or even 

merging. All of these effects may drastically change the evolution of a star. 
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18. H-Shell Fusion and the Red Giant Branch 

 
18.1    The start of the H-shell fusion 
 

When H is exhausted in the core, the core contracts. The layers around it also 

contract and their temperature increases to above T > 10
7
K, i.e. hot enough for 

shell H-fusion. 

 

In the stars of M   1.2 Mʘ, which had a convective core during the MS-phase, 

the whole star contracts before H-shell fusion starts. This is because the whole 

core is out of H at the same time due to the egalization of the abundances by 

convection. This produces a shrinking of the stellar radius and produces a small 

leftward motion in the HRD (see tracks in Fig 14.1 and Appendix E). 

(N.B. There is no shell mirror-action in this phase because the shell is not yet 

ignited.) This shrinking of the radius ends when the H-fusion is ignited in the 

shell. 

 

In stars of M   1.2 Mʘ the H-fusion in the shell starts gradually because the 

chemical profile is gradual. So as the core contracts, the regions around it where 

fusion is going on at a slower pace gradually become hotter and denser. So the 

transition for H-core fusion to H-shell fusion is smooth. So the envelope of 

these stars does not contract and the evolution tracks do not show the small 

leftward loop (see tracks in Appendix E) 

 

18.2      The H-shell fusion phase of a star of 1 Mʘ 
 

We first describe the evolution of a 1 Mʘ star as an example of the evolution of 

a star with 0.8   M   2 Mʘ. 

 

In presenting the evolution of the stars we will use the combination of their 

tracks in the HRD combined with their Kippenhahn-diagram (Kippenhahn, 

1965). These diagrams show the changes in the interior structure as a function 

of time (horizontal axis) and mass fraction (vertical axis), with various colours 

and shadings to indicate regions of different fusion phases, convection and 

composition changes. The combination of the Kippenhahn diagram with the 

HRD provides very good insight into stellar evolution. 

 

The figure below shows the evolution in two ways: 

1. The evolution track in the HRD. 

2. The Kippenhahn diagram (KD) with the letters corresponds to the location 

in the HRD at that time. The fusion regions are indicated by hatched areas 

with thick and thin hatching for efficient and inefficient fusion. 
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            Fig 18.1 The Kippenhahn diagram and the HR-diagram showing the evolution of a  

            star of 1 Mʘ. Hatched areas indicate fusion regions. Dark hatched for efficient  

            fusion (ε > 5 L/M) and light hatched for inefficient fusion (ε < 5 L/M). Grey  

            regions indicate convection. The light grey area indicates semiconvection.   
            (See Pols, Fig. 9.5, for a colour version.) 
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A-B: The main sequence phase of H-fusion in the core. 

 

B: H becomes exhausted in the center (X < 10
-3

) at point B. At that point H-

shell fusion starts. Because of the mirror effect of the shell, the outer layers 

expand as the core contracts and the star moves to the right in the HRD. 

Meanwhile an increasingly fraction of the stellar mass becomes convective. 

The phase B-C lasts about 2 Gyrs. The star is now on the “sub-giant branch.” 

 

C: At this point about half of the stellar mass is convective and the star is so 

large that it reaches the Hayashi line. From now on it is a “red giant”. 

Around that time the He-core has become degenerate! 

 

C-D: The H-shell fusion keeps adding mass to the degenerate core, which 

therefore contracts.  (Degenerates cores shrink as mass is added).  Because of 

the mirror-action of the H-fusion shell, the envelope expands.   The star is on 

the Hayashi line, so its Teff hardly changes, which implies that the expansion 

results in an increasing luminosity.  (The star climbs the  Hayashi line in the 

HRD during the “red giant branch “ phase). As the core contracts the density 

in the shell increases  because it is directly on top of the degenerate core, and so 

the shell-fusion becomes more efficient. This produces the increasing 

luminosity required by H.E. and T.E. for stars on the Hayashi track!  Notice 

that the mass in the fusion shell gets smaller (narrower in the KD) because less 

mass is needed for the higher fusion-efficiency. 

The star climbs the red giant branch  for about 0.5 Gyr. 

D:  Near point D the outer convection reaches so deep into the star (to m(r) = 

0.25), that the products of H-fusion from the main sequence are mixed to the 

surface. The surface abundance may now start to show evidence of a slight 

enrichment by He (difficult to detect in spectra of cool stars) and change in N 

abundance (from 0.0013 to 0.0020) and a decrease of C and O. 

This is called “the first dredge-up.” 

Q? Check this with the Schaller models (1992). 

 

D-E-F: As the degenerate core gets more massive, it keeps shrinking  and so 

the star keeps expanding  and the luminosity increases.  The H-shell fusion 

reaches hotter layers and becomes more efficient, producing the required  

luminosity.  This  results in a faster and faster growing of the core and an even 

more rapid increase in luminosity,  etc. This acceleration of the evolution can 

clearly be seen in the KD, by the fast growth of the core mass. The increase in 

efficiency of the shell fusion can also been seen in this diagram, because the 

mass of the shell decreases whereas its energy output (luminosity) increases. 

 

E: At this point the shell has reached a mass zone, m(r) = 0.3 Mʘ, which was 

earlier reached by the deepest extent of the convective envelope. The 

convection has mixed fresh H from the outer layers down to this depth. 

(Although the main H-fusion occurred in deeper layers, there had been some 
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depletion of H due to inefficient fusion during the MS phase. This can be seen 

in the Fig 14.4:  at the end of the MS phase X was reduced to about 90% of its 

initial value.) So at phase E, the H-fusion shell finds itself in a layer with a 

higher H content and a lower mean atomic weight than before. As a 

consequence, it starts burning at a slightly lower rate. In fact, its luminosity 

temporarily decreases  (because LH depends on μ) and the star moves slightly 

down the Hayashi track as it shrinks a little. This produces a “loop” in the track, 

that is shown in Fig. 18.2.  The star spends about 20% of its RGB time near this 

loop. This produces the observed red clump in the luminosity distribution of 

RGB stars.  

(Note: the luminosity of the red clump depends very sensitive on the stellar 

parameters such as metallicity and adopted overshooting) 

Q?             Why is it so sensitive to these parameters?   

 

 
Fig 18.2  The loop in the RGB evolution of a star of 0.8 Msun occurs when 

the H-fusion shells finds itself in a layer where the H-abundance is larger 

because envelope convection. This loop causes the red clump in the observed  

luminosity distributions. (Fig 5.16 from SC) 

 

 

                  E-F: During this phase the shell is burning in a region of higher H-abundance,  

                  so the fusion can be slower and still produce the required luminosity.  Therefore  

                  the phase from E-F lasts longer than the phase D-E, although the  luminosity is  

                  higher. 

Q?             Check this on the KD and the HRD. 

 

                  F: At this point the degenerate core has reached a mass of about 0.45 Mʘ.  

                  The contraction of the core has resulted in a temperature high enough for  

                  igniting He-fusion in the degenerate core. The star leaves the Red Giant  

                  Branch. 
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18.3 The H-shell fusion phase of stars of 1-2 Mʘ 
 

The H-shell fusion of stars in the mass range of up to 2 Mʘ is qualitatively 

similar to the one described above. The main difference is that the cores of stars 

with M > 1 Mʘ become degenerate at a slightly later age on the RGB. Once 

they have a degenerate core, the evolution of the cores is similar for all stars 

with 1 < M < 2 Mʘ because the shell fusion is then set by the mass of the core 

and the pressure of the shell directly on top of it. 

 

 18.4       The H-shell fusion phase of stars of 2-8 Mʘ 

 

The H-shell fusion evolution of stars more massive than Mi > 2 Mʘ is similar to 

that of the lower mass stars, except that the core does not become degenerate 

during this phase. 

 

Fig 18.3  shows the HRD and KD diagrams of a star of 5 Mʘ as a typical 

example. It also shows the evolution of the different Lagrangian radii. 

 

A-B-C:  This part of the evolution is the similar as for the lower mass stars. 

                  Because the star had a convective core during the MS phase, the transition from      

                  H-core fusion to H-shell fusion is more abrupt than in a star of 1 Mʘ.  The star  

                  briefly contracts as a whole, which results in the short leftward motion (B-C) in  

                  the HRD (compare tracks in Fig 18.1 and 18.3). The H-shell fusion starts at C. 

 

C-D: When the H-fusion in the shell starts the mass of the He core is 0.4 Mʘ, 

which is below the Schonberg-Chandrasekhar limit for stable isothermal cores. 

This means that the core does not have to shrink, so the star remains in thermal 

equilibrium. The core is not very dense, so the pressure and density in the shell 

is not very high. This means that a relatively large fraction of the stellar mass is 

in the H-shell (larger than for a 1 Mʘ star). This is called thick shell fusion. 

As more Helium is added to the core, it is on its way to reach the S-C limit so it 

slowly contracts. The H-shell layer then comes in a region of higher-density 

where the fusion is more efficient, so a smaller mass fraction is needed for the 

production of the luminosity by H-fusion: the mass fraction of the shell 

decreases. This is called thin shell fusion. 

Because of the mirror-action of the H-fusion shell, the envelope expands and 

becomes more and more convective. At D the star is almost fully convective 

and has arrived on the Hayashi line for red giants.  

Q?             Check this in the KD and the HRD. 

 

The figure shows that the luminosity in phase C-D is decreasing. Because the 

outer convection zone grows very deep into the star in a short time, (less than 2 

Myr from t = 81 to t = 83 Myr) the expansion also occurs on a short timescale. 
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Part of the energy produced in the shell is then used for expansion of the 

envelope, from about 5 Rʘ in C to 50 Rʘ in D. Hence the slight decrease in L. 

 

 

 
Fig 18.3  The post-MS evolution of a star of 5 Mʘ  shown in the HRD  

(fig a),  the KD (fig b) and the expansion and contraction of the different 

Lagrangain layers (fig c). Thick shaded regions indicate efficient fusion (H or 

He fusion) and thin shaded regions indicate inefficient fusion. The gray regions 

indicate convection zones (Pols: figs 9.2, 9.3, 9.4.  see Pols for colour versions ) 

 

D-E: The mass of the He core exceeds that of the S-C limit, so the core 

contracts and pulls the H-fusion with it. The contraction of the core occurs on 
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the Kelvin-Helmholtz timescale which is only about a Myr: the evolution from 

D to E is fast. 

 

  E: The convection reaches its maximum depth close to E. The convection has 

then reached the layers where the composition has been changed due to the 

former H-core fusion. Products of this fusion are then brought to the surface. 

This is the first dredge-up phase. 

 

F: Helium fusion starts in a non-degenerate core. 

 

18.5 The core mass –luminosity relation for RGB stars 

 

Stars with Mi   2 Mʘ have a degenerate helium core when they are on the 

RGB. In these stars the density contrast between the core and the envelope is so 

large that they are practically decoupled. This implies that the efficiency of the 

shell fusion is completely determined by the core-mass and not by the envelope. 

Detailed evolutionary models have shown that there is a strong and steep 

relation between L and the core mass for stars with a degenerate He-core.   

 

           
        

    Notice the strong dependence! 

 

The luminosity is independent of the total mass of the star. Therefore, all 

evolutionary tracks of stars of different mass converge onto the Hayashi line of 

the RGB. In other words, from the location of a star on the RGB one can easily 

derive the core-mass, but the total mass is more difficult.  

 

 

18.6  Metallicity dependence of the RGB   
 

We have seen that fully convective stars are on the Hayashi line, which gives 

the coolest Teff that any star with a given luminosity can get. We derived this 

location by setting the pressure in the atmosphere at τ   1 equal to the pressure 

of a polytropice star (n = 1.5) at that same density.  However, the opacities of 

stellar atmospheres depend on metallicity (even if H
-
 is the dominant opacity 

source) because the metals provide the electrons for H
-
 . A higher metallicity 

provides more free  electrons and a higher opacity. A higher opacity means that 

τ   1 is reached at a lower density, i.e. further outward.  So the Hayashi line for 

metal rich stars is at slightly lower Teff  (further to the right), than that of metal 

poor stars. 

This is the reason that the metallicity of globular clusters can easily be derived 

from the location of the RGB in the HRD  (no spectra are needed). 

 

This is shown in Fig. 18.4 which shows the CMD of the cluster M54, which is 

the center of the Sagitarius Dwarf  Elliptical Galaxy.  Therefore it had multiple 

star formation periods with different metallicities due to infalling gas.  
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Fig. 18.4   

HRD of the cluster 

M54, which is the 

center of the Sagitarius 

dwarf elliptical galaxy. 

The left (most 

populated) RGB is from 

old stars with  

[Fe/H]= -1.8.  

The right RGB is from 

stars with [Fe/H]   0.  

Notice also the multiple 

horizontal branches. 
(from Siegel et al. 2007, 

ApJL 667, L57) 

 

 

 

 

 

18.7 Mass loss on the RGB 
 

During the RGB stars are losing mass by means of a stellar wind. For low 

luminosity RGB stars the wind is possibly driven by gas pressure in a 

chromosphere , although radiation pressure on molecules has also been 

proposed. For stars higher up on the RGB, the pulsating  Miras, the winds are 

driven by a combination of stellar pulsation and radiation pressure on dust. 

 

In many stellar evolution calculations the Reimers relation (Sect 16.4.3) is 

adopted with a free efficiency factor ηR   0.25 to 0.5, which seems to give 

reasonably good evolution predictions. 

 

Adopting this description, a star of 1 Mʘ loses about 0.3 Mʘ on the RGB and a 

star of 5 Mʘ loses between 0.5 and 1 Mʘ during the RGB phase. This is shown 

in the KDs of Figs 18.1 for a 1 Mʘ  star  and in Fig 18.3 for a 5 Mʘ  star  by the 

decrease in the mass. 
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19. Ignition of Helium Fusion in Low Mass Stars: 

 from the tip of the RGB to the Horizontal Branch 

 

We have seen that stars with Mi   2 Mʘ have a degenerate helium core at the 

end of their RG phase  (tip of the RGB is point F in Fig 18.1).  

On the other hand,  stars with Mi   2 Mʘ have a non-degenerate helium core 

at the tip of RGB  (point E in Fig 18.3) 

 

19.1  The He-flash in degenerate cores of stars of M   2 Mʘ 
 

When the mass of the degenerate He-core reaches a value of about 0.45 Mʘ, 

(independent of the total stellar mass !)   the core has contracted so much that it 

reaches the ignition T of He-fusion at Tc ~ 10
8
 K. Ignition in a degenerate core 

results in an explosive start of the fusion: the predicted “Helium flash.”  

The reason is the following: 

When He is ignited, the produced energy leads to a T-increase.  

 

- In a non-degenerate core, such a T-rise would result in an increase in P and 

the core would expand (because P would become larger than required for 

hydrostatic equilibrium). Due to the expansion, T and ρ decrease, and this 

would reduce the fusion efficiency. The energy production drops and the 

core shrinks until it reaches hydrostatic equilibrium again. So in this case 

gravity acts like a regulator: the fusion does not run out of hand. 

 

- In a degenerate core the ignition of He-fusion produces a T-rise, but this 

does not result in an increased P, because in a degenerate core P is 

independent of T! So T rises, but the core does not expand so the density 

does not change, the energy production ϵ increases drastically (remember 

that ϵ ~ T
30 

for He-fusion!). This leads to more efficient fusion, still higher 

T, …etc. A degenerate core that is ignited acts like a bomb! 

 

As the temperature shoots up and reaches a value of a few 10
8
 K, the 

degeneracy is lifted. This is because the limit between degenerate and ideal gas 

is set by  Tc ~ ρc
2/3

   ( Figs 15.1)  and so for any density there is a T where the 

gas is no longer degenerate.  The density of the degenerate He core is about 10
6
 

g/cm
3
,
 
 so degeneracy is lifted when Tc    3 10

8
 K.

 

From then on the pressure increases when T-rises, so the core expands very 

quickly, the density drops and the degeneracy is lifted. The star then settles into 

a normal (non degenerate) He-core fusion in hydrostatic equilibrium.  

 

The star is now on the “Horizontal Branch” in the HRD = point G in Fig 18.1 
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The luminosity produced in the core during the He-flash is very high, and of 

order 10
10

 Lʘ (!), but it lasts very short.  The Helium flash has never been 

observed!  The energy of the flash is used to expand the originally degenerate 

core by a factor 10
2 

 in volume (from a degeneracy density of order 10
6
 to non-

degeneracy at 10
4
 g/cm

3
). Neutrinos also remove a substantial fraction of the 

fusion energy. 

 

During the ignition of the Helium fusion by a Helium flash the star is clearly 

out of hydrostatic and thermal equilibrium. Therefore we cannot plot a track in 

the HRD between point F and G! The evolution track just jumps from F to G 

in Fig. 18.1. 

 

19.2 The start of the Helium core fusion in stars of M   2 Mʘ 
 

When the mass of a Helium core reaches a mass of about 0.45 Mʘ, Helium is 

ignited. The ignition of the Helium core fusion in a star of Mi   2 Mʘ occurs in 

a non-degenerate core. This means that the gravity regulates the start of the 

fusion as described above. These stars are also found on the Horizontal Branch 

when the Helium core fusion has started. During the slow transition from the 

top of the RGB to the HB, the evolutionary track can be followed: see the loop 

from phase E  to F  (when helium fusion is ignited to F) in Fig. 18.3 

 

NB: In both the low mass stars with degenerate cores and the intermediate 

mass stars with non-degenerate cores the helium fusion is ignited when the 

helium core has reached the same mass of 0.45 Mʘ! This turns out to be 

important for the Horizontal Branch morphology. 
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20.    Helium fusion in the core: the Horizontal Branch  
 

When He-fusion has started in the core, the star settles into a new equilibrium 

and we find the stars on the Horizontal Branch (HB) in the HRD. 

This is shown in the evolution track of a 1 Mʘ star ( Fig 18.1) as the 

instantaneous transition from point F (= He-flash) to point G (= start of He-

fusion in the core).  

The He-fusion (G-H) occurs at L   10
2
 Lʘ, with a core mass of ~ 0.5 Mʘ. 

The track of 5 Mʘ shows a more gradual transition from H-shell to He-core 

fusion (D-E). The fusion (F-G-H) occurs at L   10
3
 Lʘ, with a core mass of 0.9 

Mʘ. 

 

HB stars consist from inside out of: 

- Core with He-fusion:   He → C. 

Due to the strong T-dependence of the 3 α-process the inner ~ 1/3 of the 

core  is convective. 

- Inert He-region around it without fusion. 

- H-fusion shell 
- H-rich envelope.  This envelope is mainly radiative equilibrium, but with a 

convective outside (check the KDs!). 

 

HB-stars have a smaller radius (→ higher Teff) than Red Giants. This is because 

of the Virial Theorem and the resulting “mirror effect” of the H-fusion shell: as 

the core expands (because degeneracy is lifted), the envelope shrinks → smaller 

R*, higher Teff. This is shown by the loop F-G-H in the evolution track of a 5 

Mʘ star, whose Teff  increases to about 6000K, and to a smaller extent also in 

track of the 1 Mʘ star which reaches 5000K at its smallest radius. 

 

The duration of the HB-phase of a 1 Mʘ star is about 0.1 Gyr and that of a 5 Mʘ 

star is 22 Myr. This is longer than the expected nuclear lifetime of star with a 

luminosity of about 10
2
 Lʘ (for 1 Mʘ) or 10

3
 Lʘ (for 5 Mʘ), considering the 

high luminosity and the small mass deficiency for Helium fusion (0.0007). This 

is due to the large contribution of the energy production by the H-shell fusion. 

 (see Homework 20.1 and 20.2) 

 

The Helium fusion occurs originally by the 3 α-process (3 He → C), but as the 

Helium abundance decreases and the C abundance increases, the reaction  

H + C → O becomes more important. So at this point the C abundance starts to 

decrease again but the O-abundance increases in the core. 
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--------------------------------------------------------------------------- 

H20.1. Homework 
Study the Kippenhahn diagrams for stars of 1 Mʘ. 

a. Derive the amount of Helium that is fused during the Horizontal Branch    

     phase (F-H) and calculate the total amount of generated energy.  

b. Derive the amount of energy generated by the H-shell fusion during the same  

     period  

c. Which fraction of the energy is due to the H-shell and which fraction is due  

    to the Helium core? 

d. Compare your results with the luminosity and the duration of the HB phase. 

 

H20.2  Homework 
                 Do the same for the 5 Mʘ model. 

------------------------------------------------------------------------------------------------------- 

 

20.1 The evolution on the Horizontal Branch 
 

Because the He-fusion phase lasts only a fraction of the H-fusion phase, all HB 

stars in a cluster at any time come from a small range in initial masses. This 

implies that they all have about the same core mass and therefore also about the 

same luminosity at the beginning of the He-fusion.  

So the HB is approximately horizontal in log L or Mbol, but bends down at 

high Teff  if plotted in V magnitude. 

Q? Why? 

                  From the evolution tracks of 1 and 5 Mʘ we can see that a cluster of 12 Gyr has  

                  a HB at 10
2
 Lʘ, and a cluster of 0.1 Gyr has a HB at 10

3
 Lʘ.  

 

The radius of the HB-stars, and hence their Teff  (location in HRD) depends on 

the depth of the convection in the H-envelope: the deeper the H-convection 

zone → the larger R* → the cooler the star. The tracks of 1 and 5 Mʘ stars 

show that the depth of the convection decreases during the He-fusion, but at the 

end  it increases again. This explains why HB stars make a leftward-loop in the 

HRD during core-Helium fusion and then move back to the Hayashi line. When 

the convection zone reaches its minimum depth, that star has the maximum Teff. 

 

The He-fusion on the HB and the H-fusion phase on the MS differ in two ways: 

(a) by the mirror action of the H-fusion shell in the HB phase and  

(b) the evolution is determined by the properties of the core, and the envelope 

follows.  

 

Compare the radius evolution of a HB star, with that of a MS star. During the 

MS phase the star expands  (rightward motion in HRD), and  at the end of the 

MS phase the star contracts (short leftward loop). Because of the mirror 
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principle, a star in the HB phase does exactly the opposite:  contraction of the 

outer layers during He-fusion in the center, when the core expands, and 

expansion of  the outer layers near the end of the He-fusion, when the core 

shrinks. The expansion  and contraction of the star is produced by the 

increasing and decreasing depth of the outer convection zone.  

 

The thickness of the convection layer (and therefore the hottest Teff  that a star 

can reach on the HB) depends on the envelope mass at the time the core-He 

fusion starts. This is demonstrated in Fig. 20.1 which shows the location in  the 

HRD of low mass stars with Z=0.001 (charactic of old globular clusters) at the 

start of the He-fusion phase. 

The smaller the envelope mass, the bluer the star during the HB phase. 

 

Fig 20.1      

The wide grey line shows the 

location of stars with the 

same Helium core mass  

(0.49 Mʘ) at the beginning of 

the He-core fusion, for 

different total masses ranging 

from 0.52 to 0.92 Mʘ, and so 

for envelope masses from  

0.03 to 0.43 Mʘ. The full lines 

show the evolution tracks 

during the core-He fusion. 

The location depends on the 

envelope mass. 
(Pols, Fig 9.8, from Maeder)  
 

 

20.2 The observed HB in globular clusters 

 
                  HB-stars in a clusters have about the same L, but the range in Teff  reflects the 

different amounts of H-envelope mass at the onset of the He-fusion. So to first 

order approximation, the blue-extent of the HB depends on the amount of H 

outside the H-shell fusion after the He-flash.  

Observations show that metal poor cluster have in general an extended 

Blue HB and metal rich clusters have in general a short Red HB.  
 

This is shown in Fig 20.2 which shows the colour magnitude diagrams of a 

metal rich globular cluster, 47 Tuc with Z=0.17 Zsun,  and a metal poor cluster, 

M15 with Z=0.006 Zsun.  
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Fig. 20.2 

CMDs of two GCs of different metallicities. The HB of the cluster with the lowest Z extends 

much bluer (higher Teff) than the high metallicity cluster. (CO Fig. 13.20) 

 

The immediate conclusion to be drawn from the comparison with the figure 

above is that stars in more metal rich clusters have a larger envelope mass when 

the arrive at the HB than those in metal poor clusters.  This would imply  

that stars with higher Z have lost less mass during the RGB phase.  

However, this is opposite to expectations because the RGB mass loss is 

(probably) increasing with metallicity (more dust and more molecules to 

produce radiation pressure) . 

 

                  Models suggest that the extent of the HB is also sensitive to the initial He  

                  abundance as shown in Fig. 20.3.  

 

 
Fig 20.3  The effect of different Helium and metal abundances on the extent of 

the HB.  A higher initial He abundance results in a wider HB.  
(Fig from Lee et al. 2005, ApJ 621, L57.  See their figure 1 in colour.) 
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However, some globular clusters have a Blue HB or Red HB although their 

metallicity is the same! This suggests there must be another mechanism (apart 

from RGB mass loss and metallicity) affecting the extent of the convective 

envelope and the Teff  of the HB stars. This problem is called the second 

parameter problem. 

 

Some of the solutions that have been suggested involve: 

- The stars in some clusters may be faster rotating than in other clusters. This 

would produce extra mixing (we will discuss the effects of rotation later). 

- Convective overshooting may have played a role. This would result in a 

larger core and a different chemical profile. 

 

These effects could result in a different core-mass for stars of the same age and 

metallicity and in a different depth of the convection zone on the HB. 

 

Multiple stellar populations in clusters. 

It is possible that second parameter  problem is related to the problem of the 

multiple stellar populations that have been observed in many massive GCs. 

These clusters show multiple main sequences and different abundance ratios 

within the custer, clearly indicating that not all stars in a GC  had the same 

initial abundances. 

Two types of solutions have been proposed: 

1.  Multiple star formation episodes, where the mass loss products of  massive 

stars are gathered in the center of the cluster until enough enriched gas has 

been collected for a second burst of starformation. These second generation 

stars will be more metal rich and more He-rich. (D’Erocle et al. 2008,  

MNRAS 391, 825). Most of the first generation stars have to be expelled 

from the cluster to explain that it contains about 50 % second generation 

stars. 

2. The  ejected enriched gas from  massive star winds  have been captured by 

the accretion disks of low mass stars, which are forming much more 

slower. The accreted enriched gas ends op in low mass stars as these cross 

the central regions of the cluster where the gas resides. This produces a 

fraction of the low mass stars to be metal rich and He rich. (Bastian et al. 

2013, MNRAS 436, 2398). 
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21.     The Asymptotic Giant Branch  phase for 

stars of  1 < M < 8 Msun.  
 

At the end of the HB phase, when He is exhausted in the core, the core is 

without energy source, so it will contract.  Because the star still has a H-burning 

shell (with mirror-action),  the core contraction results in an envelope 

expansion. So the star moves to the right in HRD. Because the expanding  

envelope absorbs part of the energy, the luminosity actually decreases a bit 

during the expansion. (This is seen in the track of the 5 Mʘ star, Fig 18.3,  at 

point H)  

 

The core contracts until He starts to burn in a shell.  In stars  with an initial 

mass in the range of 2 < M < 8 Msun  the CO core will become degenerate.  

 

The star is now at the bottom of the Asymptotic Giant Branch (AGB). This 

corresponds to phase H  in the evolution track of a 5 Mʘ star (Fig. 18.3). 

 

An AGB star consists from inside out of:  

degenerate C/O core,  
He-burning shell : He  → C  → O 

He-rich intershell zone,  

H-fusion shell; H → He 

convective H-rich envelope. 

 

The internal structure  of an initially 5 Msun star is shown in the figure below. 

The star has a radius of 44 Rʘ. Notice that the core, including the H-fusion 

shell, is very small: 0.0056 R*. The core contains  only 2 10
-7

 of the volume of 

the star,  but 1/5 of the stellar mass.  

 
Fig 21.1  The internal structure of a 5 Msun star at the start of the AGB phase. 

This shows the distribution of the different layers in terms of extent. The 

distribution in mass is very different!   (CO Fig. 13.8) 
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In terms of mass, the distribution of this star is (see Fig 18.3 point H): 

CO-core 0.40 Msun, He-burning shell 0.10 Msun, He intershell zone 0.50 Msun,  

H-burning shell 0.05 Msun, H and He envelope 3.25 Msun.  

Total mass 4.30 Msun. 

 

The AGB phase  is one of the most fascinating evolutionary phases because  

several  interesting physical processes are happening in that phase. 

 

A. The C/O core becomes degenerate. For stars with a shell fusion around a 

degenerate core the luminosity is set by the core-mass (we have seen this 

already for RGB and HB stars).  A star with a C/O core of 0.6 Mʘ has  

L ~ 5x10
3
 Lʘ no matter if the mass of its H-envelope is 0.4 Mʘ or 4 Mʘ! 

 

B. The two shell burning phases alternate in producing the luminosity of the 

star, with a periodicity of about 10
3
 years, with the changes triggered by 

shell-flashes. These are called thermal pulses. 

 

C. The very deep convection can bring the products of the He-fusion (i.e. C) to 

the surface. These are called second and third dredge-up. This can create 

a sudden flip in surface composition fron a C/O-ratio < 1 to > 1.  This has 

dramatic effect on the dust around these stars. Even s-process elements, 

produced in the thermal pulses are dredged to the surface. 

 

D. The stars have very high mass loss rate due to the combination of pulsation 

and radiation pressure on dust. The mass loss rate increases from about 10
-7

 

Mʘ/yr at the bottom of AGB to 10
-5

 or 10
-4

 Mʘ/yr at the tip of AGB. 

 

E. The end of the AGB phase and the final fate of low mass stars is completely 

dominated by this mass loss. The mass of White Dwarfs is set by the mass 

loss on the AGB. 

 

 

21.1 The Core-Mass ↔ Luminosity Relation of AGB stars  

 

The C/O cores of the AGB stars are degenerate, so there is a fixed  

core-mass ↔ core radius relation. This implies that the pressure of the shells is 

mainly set by the mass of the C/O core, and so is their energy production. 

(This differs from normal, i.e. non-degenerate stars, in radiative equilibrium, 

where L is usually depends on the total mass.) 

 

Paczynski (1971, Acta Astron. 21, 271) has shown that this results in a relation 

between the luminosity and the core-mass: usually called the Paczynski-

relation.   (An analoguous relation exists for the RGB, when the H-burning 

shell is on top of the degenerate He-core.) 
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For AGB-stars the Paczynski-relation is: (for solar metallicity) 

 
 

  
         

  

  
          

 

Some values: 

   Mc/Msun    L/Lsun 

   0.537           10
3
 

   0.689           10
4
 

   1.000        3 10
4
 

 

This relation has interesting consequences: 

- If we know  L of an AGB star we know its core mass, but not the envelope 

mass or total mass. 

- For a given luminosity we know the rate at which fusion occurs. This fusion 

adds mass to the core, so we know the growth of the core mass and the 

increase of L. So we can easily calculate the “speed” with which these stars 

will climb the AGB. (We will do this later). 

- With the core growth, strong mass loss is reducing the mass of the envelope 

and finally stopping it ascent on the AGB. 

 

21.2     The second dredge-up at the beginning of the AGB phase 
 

                 The internal structure  of  a star during the early AGB phase is shown in Fig  

                 21.2. This is the KD of a star of initially 5 Msun, of which the evolution track  

                 and the KD of the earlier evolution were shown in Fig. 18.3. 

 

      Fig 21.2   

Kippenhahn Diagram of the start 

of the AGB phase of a 5 Msun 

star. The letters refer to the 

evolution track in Fig. 18.3.  Note 

the second dredge up at point K 

when the convection zone 

reaches the He-rich intershell 

zone. (OP Fig. 9.4) 
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            Shortly after the He-shell burning starts, the H-shell burning is switched off, 

                at point H in the evolution track.  The increasing core mass results in an  

                increasing luminosity,  up to point J in the evolution track, which implies an  

                increasing radius, because the star is at the Hayashi Teff  lower limit. This  

                increase in radius is achieved by the deepening of the convection zone. 

                (Outer convection zones bloat the stars: the deeper the outer convection the  

                larger the stars) 

                 

                 When the convection zone reaches the He-rich intershell zone it mixes the 

                 products of H-fusion (CNO-cycle) with the outer envelope and brings it to the 

                 surface. The inter shell zone had no more H, a very low abundance of C and O,  

                 but a high abundance of N. The amount of the abundance change at the surface  

                depends on the ratio between the mass of the intershell zone and the mass of the  

                envelope. 

                This is called the second dredge up. 

                The second dredge up is similar to the first dredge-up during the RGB phase,  

                 but stronger. 

 

 

21.3 Thermal Pulses and the third dredge-up of AGB stars  
 
When the star climbs the AGB the star goes through a series of He-flashes that 

are called “thermal pulses” at time intervals of ~ 10
3
  yr  to 10

4
  yr.  (Do not 

confuse the thermal pulses with the He-flash that started the He-core burning).   

 

The basic reason for the occurrence of pulses is the unequal burning rate of the 

                  the  H-burning shell and the He-burning shell. The H-shell leaves more He          

                  behind than the He-shell can fuse, so the region between the two shells, the  

                  intershell region (ISR),  grows in mass until it becomes unstable. See Fig 21.3. 

 

                               Fig 21.3   

                            Sketch of the   

                      mass evolution of the  

                                    He-burning shell and  

                            the H-burning shell  

                 and the He-rich intershell  

                   region during the    

                          AGB phase. 

 

               

               This results in the two fusion shells (H-shell and He-shell) being alternatively  

               active. (See Fig. 21.4). Many pulses occur during the AGB phase.  
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               Fig 21.4 This figure  shows the alternating activity of the two shells of 

               an  AGB star of  Mi = 7 Mʘ since the beginning of the AGB-phase. 

               The figure covers a period of 3000 yrs.  Many of such pulses occur during the  

               AGB phase. (from Iben 1975, ApJ 196, 525) 

 

              

During thermal pulses, interesting mixing processes occur.  For understanding 

the time sequence, follow the description in Fig. 12.5  (from Pols section 

10.1.1). 

 

 
 

Fig. 21.5  The internal evolution of an AGB star during  two thermal pulses decribed in the 

text. (see OP Fig. 10.3 for a colour version).  

 

 

1. Most of the time the H-burning shell produces almost all  luminosity and 

the He-shell is inactive. So in mass, M(r), the H-shell moves out faster than 

the He-shell. This implies that the He-layer increases in mass. 

 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       147 

2. As the intershell region (ISR), that consists of Helium, grows in mass, the 

pressure at the bottom of that region steadily increases because more and 

more Helium is piled on top of the degenerate C/O. When the pressure 

reaches a critical value, helium is ignited in a thin shell. 

 

3. Ignition in a thin shell leads to a thermal instability of the same type as the 

ignition in a degenerate core, although the gas is not degenerate! The reason 

is the following: When the fusion is ignited, the gas is heated and it 

expands. However, if the shell is very thin (thinner than about 0.25 times its 

radius) the expansion is not enough to bring down the temperature so the 

fusion keeps going at a faster rate until the layer has time to expand and 

then the shell burning is stable. So it looks like a flash in degenerate gas, but 

the reason is different. (See Pols section 6.5.2 for details.) 

 

4. As the He-shell fusion starts, it produces so much energy (up to 10
8
 Lʘ) that 

the ISR becomes convective and expands. The H-shell is pushed upwards 

where the pressure drops to a value that cannot keep the H-fusion going. So 

as the He-shell fusion goes on, the H-shell fusion is extinguished. This lasts 

for about 10
2
 years. 

 

5. When the He-shell fusion is active, the ISR becomes convective (due to the 

large energy flux that cannot be transported by radiation). This convection 

in the ISR distributes the products of the Helium-fusion (mainly C) over the 

ISR. The intershell convective zone (ICZ) is shown in the figure. 

 

6. When the He-shell fusion is active and moves outward in mass into the ISR, 

the degenerate C/O core contracts. 

Q:  Why? 

As the core contracts, and the He-shell is active, the envelope expands. As 

the star is on the Hayashi line, it can only expand by deepening its envelope 

convection region. So the outer convection now moves into the ISR which 

is now enriched with He-fusion products and brings these to the surface. 

This is called the “third dredge-up.”  

It brings C to the surface, but also s-process elements that are formed 

during the thermal pulse! 

 

7. After the dredge-up, the H-shell becomes active again and the He-shell 

becomes inactive. As the H-shell moves outward in mass, the ISR grows in 

mass again until the pressure at the bottom of the ISR is again so high that 

the He-shell is ignited again and then the cycle is repeated. 

 

8. The duration of the active He-shell is typically about 10
2
 yrs, and that of the 

active H-shell (i.e. the time in between two thermal pulses) is about 10
3
 

years for the more massive AGB stars of M > 4 Mʘ, and 10
4
 years for the 

lower mass AGB stars. 
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9. The phase of the repeating thermal pulses is called “the TP-AGB phase.” 

Each cycle brings more and more C to the surface, so that eventually the 

massive AGB stars near the tip of the AGB phase have a photosphere with a 

C/O ratio > 1, instead of the classical case of O/C > 1. These stars are easily 

distinguished because instead of O-rich molecules and dust (i.e. silicates) 

they have C-rich molecules and dust (carbonaceous-grains). The flip from 

an O-rich to C-rich atmosphere is drastic because the CO-molecule is the 

most abundant and strongly-bound molecule. So when O/C > 1 all C is in 

CO and the remaining O forms OH-molecules etc. and silicate dust. On the 

other hand if C/O > 1, then all O is locked in CO-molecules and the 

remaining C can form molecules such as CH etc. and carbon-dust. 

 

10. In the most massive TP-AGB stars the H-shell is active at such a high 

temperature that the H-fusion occurs via the CNO-cycle and not via the PP-

chain. This implies that C (that was transported by convection of the ISR 

during the time when the He-shell was active) is converted into N. This 

process is called “hot-bottom burning” and it may prevent TP-AGB stars 

to become very C-rich and become instead N-rich at the surface. 

 

Hot bottom burning also produces nuclei like 
7
Li, 

23
Na, 

25
Mg and 

26
Mg, which 

are found to be overabundant in globular clusters with a second generation of 

star formation. 
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21.5 Summary of the dredge-up phases 

 

The dredge-up phases of stars of Mi < 8 Mʘ are shown below.  

 

 
Fig 21.6  The dredge-up phases during the late evolution of low mass stars. The 

changes in surface compositions are written next to the track. 
(OP fig. 11.5) 

 

1. The first dredge-up occurs when the star is on the RGB and the envelope 

convection reaches the depth where He was enriched during the MS phase. 

This results in a small increase of He at the surface. 

 

2. The second dredge-up occurred in the early AGB phase for stars of Mi > 4 

Mʘ when the star expands after the HB phase. This expansion is produced 

by the growing of the convective envelope. It reaches even below the depth 

(in mass) of the H-shell during the HB phase. So it reaches into the He-

layer! It brings He, and N-rich and C-poor and O-poor gas, mixed with the 

original envelope mass to the surface. So the photospheres become enriched 

in N. 

Q:  Is N enriched by the same factor as C is depleted? 

 

3. The third dredge-up (or rather dredge-ups) occurs during the later AGB 

phase when the envelope convection after the thermal pulses reach into the 

ISR which does not contain H but mainly He and products of the He-fusion, 

such as C. The surface gradually becomes C-richer. This also brings s-

process elements, such as technesium (Tc) to the surface. These are the S-

stars. 

For the most massive AGB stars the C/O ratio may even change from < 1 to 

> 1. These are the C-stars. 

 

All of the envelope mass of AGB stars is expelled by mass loss during the late 

AGB phase.  AGB stars are the main producers of C, N and s-process 

elements in the Universe 
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21.6 The Evolution Speed During the AGB phase 
 

Because the luminosity during the AGB phase is set by the coremass, but the 

growth of the coremass is set by the luminosity, there is a simple way to 

estimate the speed with which a star ascends the AGB-branch. 

 

The luminosity of AGB stars is related to their core mass by the Paczynski-

relation. 

 
 

  
         

  

  
        

 

On the other hand, the core mass grows due to nuclear fusion.  About 90% of 

the time the fusion is dominated by H-shell and 10% by He-fusion. 

       The energy production of H-fusion is 6x10
18

 ergs/g   = 5.5x10
18

 ergs/g 

       The energy production of He-fusion is 6x10
17

 ergs/g 

 

 
      

  
 
 

 
 

       

        
 
  

  
                 

  

  
       per sec 

 
               

  
                           

 

This yields 

 
  

  
       

  

  
      

   
             

 

Now substitute                          
         

 

                           →    e-folding time only ~ 1.4x10
6
 yrs 

 

where t = 0 is defined as the time when the star enters the AGB with a 

luminosity L = 10
3
 L.   

 

Suppose a star enters the AGB at L ~ 10
3
 Lʘ (see fig 18.3) then it will reach 

 L ~ 5x10
3
 Lʘ  at t ~ 2.3x10

6
 yrs with Mc = 0.60 Mʘ 

 L ~ 3x10
4
 Lʘ  at t ~ 4.8x10

6
 yrs with Mc ~ 1.0 Mʘ 

 

So 1. AGB stars ascend the AGB fast = exponentially in few 10
6
 yrs 

 2. During that time the core mass increases to ~ 0.6 Mʘ or larger. 
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21.7 Mass Loss and the End of the AGB Evolution 

 
Observations of White Dwarfs in clusters show that stars with initial mass up to 

about 6 or 8 Mʘ end their lives as white dwarfs with M ~ 0.6 Mʘ. So obviously, 

most stars must terminate their AGB phase  with Mc ~ 0.6 Mʘ or L ~ 5x10
3 

Lʘ. 

More massive WD with M ~ 1 Mʘ must have reached  L ~ 3x10
4
 Lʘ at the 

AGB-tip. 

 

We have seen before that stars climb the AGB in an exponential function of 

time, so the mass of the core also increases exponentially with time. What could 

stop this growing of the core? Mass loss! 

 

Observations show that all AGB stars suffer mass loss at a rate that increases 

from 10
-7

 Mʘ/yr at the bottom of the AGB to very high values of ~10
-5

 Mʘ/yr at 

the tip of the AGB. We have seen before that the high mass loss rates of AGB 

stars are due to pulsation and dust driven mass loss. 

 

We now describe a simple method to estimate the effect of mass loss on the 

AGB and to predict the mass of the resulting white dwarfs. 

 

Suppose we can describe the mass loss rate Mwind as a function of L, then we 

can also describe it as a function of t (because L = f(t)). 

 

Let  Menv(t = 0) be the envelope mass when the star enters the AGB. The 

envelope mass decreases due to: 

 Inside:  1. Nuclear fusion:                    
 Outside: 2. Mass loss by the stellar wind                     
 

So    
     

  
  

   

  
        

 

Throughout most of the AGB phase mass loss by the wind is more efficient in 

reducing the envelope mass than the growth of the core. In that case 

 

                                    
 

We want to estimate how long it takes to remove (almost) the full envelope 

mass. 

 

For simplicity, let us adopt the well-known “Reimers-relation” (sect 16.4.3) , 

with       although it is not the most accurate one for AGB stars. 

 

          
       

            

      
    in    Mʘ/yr   
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Using L(t) derived before and             
      for constant            

gives               
   . Now, with           , we can solve the 

decrease of envelope mass as a function of time. 

 

Let us make a simple estimate for a star that enters the AGB phase with M = 3 

Mʘ, consisting of a core of Mc = 0.54 Mʘ and an envelope of Menv = 2.46 Mʘ at 

t = 0. The Paczynski relation predicts that          
    at t = 0. 

 

Since L is the dominant variable in the Reimers relation for M, we take Teff ~ 

2500K is constant and adopt a mean          during the AGB phase of 

this star. 

 

In that case 

          
         

 

                         
    

          Msun/yr   

          
                     Msun/ Myr (!) 

 

Integration gives 

             
 

 
                                

 

This shows that the total mass of the envelope, 2.46 Mʘ, is removed by the 

wind after 3.2x10
6
 yrs!  At that time L = 1.2x10

4
 Lʘ and Mc = 0.72 Mʘ. 

 

 

Compare this with: 

a. the observed maximum L of AGB stars in the Glob Cluster M3 (fig 1.3) 

b. the derived mass of the White Dwarfs   <MWD> ~ 0.6 M 

 

So we see that: 

1. The AGB terminates because mass loss has stripped (almost) the full 

envelope. 

2. The final mass of the WD is determined by Ṁ (AGB) 

3. The maximum luminosity of the AGB stars is set by Ṁ (AGB) 

4. The mass loss of the AGB prevents that stars in the mass range of about 

2 to 8 Mʘ become supernovae. 

(If it was not for this mass loss, the SN-rate would be much higher!) 

5. We see from this simple estimate that we can expect the AGB lasts about 

3 Myrs and that it ends at L ~ 10
4
 L with a degenerate core mass and 

~0.6 Mʘ! 

 

We have used the Reimers’ relation for Ṁ (AGB). Observations show that the 

mass loss on the AGB increases more drastically near the tip of the AGB and 

reaches a value of a few 10
-5

 Mʘ/yr during a short superwind phase. This is 

important for the formation of Planetary Nebulae (to be discussed later). 
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------------------------------------------------------------------------- 

H21.1 Homework 
 

Calculate the evolution of two AGB-stars that start the AGB with 

 M* = 2.0 Mʘ and Mc = 0.522 Mʘ 

 M* = 5.0 Mʘ and Mc = 0.55  Mʘ 

 

Use the mass loss rate derived from IR-flux of OH/IR stars (= AGB stars), and 

its relation with the period of pulsation  (sect 16.4.4), or the Reimers relation 

with η=2 (whichever is the larger of the two). 

Assume the relation between Teff  and L from the track in  Fig 18.3. 

 

1. Write the differential equations that describe L(t), Mc(t), Menv(t).  

Solve them by computer. Assume that the AGB evolution ends when the 

envelope mass is smaller than 0.01 Mʘ. 

 

2. Calculate  L(t), Mc(t), Menv(t) and indicate where pulsation driven mass loss 

dominates. 

 

3. What is the core mass Mc and L at the tip of the AGB? How long does the 

AGB phase last for these stars? 

 

------------------------------------------------------------------------------------------------------------ 
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22.   The Post-AGB Evolution and  

          Planetary Nebulae 
 

22.1 The Post-AGB Phase 
 

Evolutionary calculations show that a star will leave the AGB when the mass in 

the H-envelope has decreased to only about 10
-2

 to 10
-3

 Mʘ, depending on the 

core mass. At that time, this little amount of H-envelope mass cannot keep a 

fully developed convection zone. The convective envelope now slowly shrinks 

and part of it becomes non-convective, but radiative. This is first in the deepest 

layer of the envelope, where κ is smallest. 

 

The star still has double-shell fusion around the degenerate core and its 

luminosity is still given by the Pazcynski-relation of the AGB-phase. 

This post-AGB phase is short, about 10
3 

to 10
4
 years, so the core mass does not 

increase much during that time. This means that the star moves horizontally to 

the left in the HRD.  

 

The post-AGB evolution track of a star with a degenerate core of 0.6 Msun 

that leaves the AGB with an envelope mass of 0.003 Msun is shown in Fig 22.1 

 

 
Fig 22.1  The post-AGB evolution track of a star of Mc=0.60 and Menv=0.003 

Msun.  The numbers in parentheses indicate the decreasing envelope mass. The 

other values are the times, in years, compared to the moment when 

Teff=30000K. At that time it is the central star of a planetary nebula (CSPN). 

The full crossing takes 3 10
4
 years. Notice the 10 thermal pulses on the AGB 

and the decrease in L when Menv < 0.0005 Msun.  (Fig from CO fig 13.3, based on 

Iben 1982). 
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The location of the star during the horizontal crossing in the HRD, i.e. its Teff 

and R, depends on the mass of the envelope. As long as Menv ~ 10
-2

 Mʘ for a 

high luminosity AGB, or 10
-3

 Mʘ for a low luminosity AGB, the star remains 

close to the AGB. But as the shells keep fusing, the envelope loses mass to the 

core, so the envelope mass decreases steadily. This forces the envelope to 

contract, as it has less and less mass to keep the envelope extended by 

convection. The star keeps moving to the left in the HRD. 

 

When             and the radius has decreased from 2000 Rsun to 3 Rsun, the 

star is the central star of a Planetary Nebula (CSPN) as we will show later.  At 

that temparture the star develops a line driven stellar wind, the same we 

discussed  before for the hot luminous stars, with a mass loss rate of order 10
-6

 

to 10
-8

 Mʘ/yr or so (strongly dependent on luminosity as M ~ L
1.6

) and a 

terminal wind-velocity of about 1000 to 4000 km/s. So now the envelope loses 

mass even faster: not only to the core but also to the wind,  and so the crossing 

of the HRD goes even faster. The speed of the crossing is determined by the 

continuing mass loss from the envelope! The crossing time is of order 10
3
 to 

10
4
 years. 

 

When the envelope mass has decreased to as much as about ~ 3 10
-4

 or 3 10
-5

 

Mʘ (depending on L) the star is on the left of the HRD with a small radius of 

about 0.25 Rsun and         
  . Soon after that the fusion stops completely 

because the envelope does not produce sufficient pressure anymore for the 

fusion to continue. 

 

Fig 22.2 Schematic description of star during crossing of HRD 

 

 AGB                Post AGB Central Star PN       End of HRD crossing 

Menv ~ 3 10
-3

     Menv ~ 2 10
-3

   Menv ~ 10
-3

  Menv ~3 10
-4

 Mʘ 

 

           
 

Fully conv. env. small region  most of envelope total envelope  

 in rad. equ. in rad. equ                in rad equ.                                                      

                                                                                             shell fusion decreases 

 

               During the first part of the post-AGB track, the star is invisible, because it is  

               hidden in the dust that was ejected at the end of the AGB-phase, during the so- 

               called “superwind phase” when the mass loss rate was as high as 10
-4

 Mʘ/yr. 
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At  Teff ~ 30,000 K, two effects start to happen at about the same time: 

- the star is so hot that it develops a radiation-driven wind (driven by UV lines) 

- the high UV flux starts to (1) destroys the dust grains of the late AGB wind, 

                          (2) dissociates the molecules, (3) ionizes the ejected material. 

 

So part of the circumstellar material (AGB wind and star wind) becomes 

ionized → H II region → Planetary Nebula  (to be discussed later). 

 

22.2 Born-Again AGB stars 

 
In some cases, a star experiences a last thermal pulse while it is moving to the 

left of the HRD. This is possible because we have seen that the time between 

two thermal pulses is on the order of 10
3
 to 10

4
yr and the HRD-crossing time is 

also of that same order. It is estimated that about ¼ of all the AGB stars will 

have a late thermal pulse when they have already left the AGB. 

 

The two most famous examples are Sakurai’s object (discovered in 1996 by a 

Japanese amateur astronomer) and FG Sagittae (FG Sge). 

FG Sge was discovered to be variable in 1943. In 1955 its spectrum suggested 

that it was a blue B-type star that was slowly getting redder. In 1991 it was a 

yellow F star and then kept going to the red where it ended as a K-star. 

 

The star was the central star of a PN. This means that it had been an AGB star 

before and had already crossed the HRD to the left and produced a PN a few 

thousand years ago. When it was a hot star, the last thermal pulse produced so 

much energy that the thin envelope expanded again which resulted in an 

increasing radius and a decreasing Teff: its return to the right of the HRD. 

 

22.3 Planetary Nebulae 
 

For a long time PN were explained in terms of the central star ionizing the 

previous AGB wind.  The problem with this idea was that the expansion speed 

of the PNe is typically vexp ~ 50 km/s, but the AGB winds are ejected with vAGB 

~ 10-15 km/s.  How could the AGB material have been accelerated? 

 

At about 1975 it became clear that central stars of PN (CSPN) have a stellar 

wind with mass loss rates ranging  from 10
-8

 to 10
-6

 Mʘ/yr, with the higher 

values reached at Teff ~ 30 to 40 kK, i.e. when the star is halfway its crossing 

over in the HRD. The wind velocities are about 1000 to 4000 km/s, scaling 

approximately as vwind = 4 vesc. 

 

                  Based on these new discoveries Kwok (1975 and 1978)  proposed a completely  

                 different scenario for the formation of PN.  
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                Planetary Nebulae are the result of the interaction between the slow AGB  

                wind and the fast CSPN wind!  

                 (See Lamers & Cassinelli ISW section 12.5 for a detailed description of theory.) 

 

               Fig 22.3   

                       A model for the formation of Planetary 

Nebulae:  the fast wind from the   central  

                  star runs into the slow wind ejected  

              during the AGB phase. The interaction  

             region (black) is shock heated and 

ionized, producing the nebula.  

Outside the nebula is the un-shocked cold  

                 AGB wind. (ISW Fig 12.8) 

 

 

 

 

 

It is easy to show (ISW 12.5) that the velocity of the interaction region between 

the slow AGB-wind and the fast CSPN wind is 

 

               
       

         
   

 

Adopting mean values of          10
-7 

 and        
   
  10

-4   
Msun/yr 

 
and  

                    = 20 km/s, we find that       40 km/s, in agreement 
with the observations. 

 

The mass of the interaction region, part AGB wind and part CSPN wind,  is 

 

              
          

       
  

 

where t is the time since the wind of the CSPN has reached the AGB wind. 

 

Q?              Explain why the expansion velocity of a PN depends on the ratio  

                   
 

The Table below (ISW  Table 12.1) shows the results of calculations.  

Notice that: 

- The mass of the interacting zone (i.e. the PN) after 10
4
 years is of order 0.2 

Mʘ, which is only a small fraction of the mass ejected on the AGB. 

- The expansion velocity is of order 30 – 50 km/s which is much faster than 

the AGB wind and much slower than the CSPN wind. 

- The size of the PN after 10
4
 yrs is about 0.2 to 0.5 pc. 
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                 The subscript “s” refers to the shocked interaction region, which is the PN.  

                 The mass and the expansion velocity of the PN refer to 1000 yrs after the onset  

                 of the fast wind. 

 

Note:  Most  PN have complex morphologies that require additional effects to 

be taken into account such as: 

- rotation and non-spherical winds of AGB stars 

- binarity 

- magnetic fields. 

(see Balick and Frank, 2002, ARAA; and July 2004 Scientific American) 
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23.    White Dwarfs 

 

23.1 The Evolution of White Dwarfs 

 
When Menv < 10

-4
 to 10

-6
 Mʘ (depending on L) the shell fusion stops, the 

luminosity decreases and the radius decreases. The star moves into the WD-

cooling track (see Fig 22.1). All stars with initial mass Mi < 8 Mʘ end their 

lives as WDs. 

 

White dwarfs are stars that are electron non-relativistic degenerate, so their EoS 

is P ~ρ
5/3

. This means that they are polytropes with  γ= 5/3 or n = 1.5. 

Combining this EoS with hydrostatic equilibrium gives the mass radius relation 

for WDs. 

       
            

 
     

 
     

 
  

 
  

so 

 

                                        

 

Numerically: 

 

H - WD  A/Z = 1                     
         

He or C/O WD A/Z = 2                     
         

 

Since the mass remains constant, the radius remains constant. So an evolution 

track (cooling track) of a WD is along a line of constant R! 

 

The luminosity of WD comes from the cooling. 

The electrons cannot cool ! because they are degenerate, so their energy 

distribution is set by the density (which does not change) and not by the 

temperature. Only the ions can cool and they contain almost all of the mass of 

the WD. The loss of thermal energy is converted into radiation at the 

photosphere. 

 

Initially the ions had a temperature of order 10
8
 K, which was the temperature 

of the Helium-fusion shell and also that of the isothermal core. Such young 

very hot WD cool down fast and so their luminosity is relatively high (~10
-1

 

Lʘ). However, as the ions cool, the luminosity decreases and so the cooling 

slows down even more and the luminosity decreases over time. 

(For the derivation of the cooling time: see Pols 10.2.1) 

 

Cooling time: 

      
       

    
  

    

    
 
    

 in yrs  μion = 2 for He and C,O  
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Fig. 23.1  The cooling curve of a CO-WD of 0.6 Msun.  Dotted line: simplified 

model (Mestel 1952). Full line: taking into account crystallization (Winget 

1982) (OP fig 10.8) 

 

 

To go from PN (L ~ 10
4
 Lʘ) to 10

-2
 Lʘ (average ~1 Lʘ) takes few 10

7 
yrs. 

 To cool down a WD from 10
-2

 Lʘ to 10
-4

 Lʘ takes few 10
9
 years. 

 To cool down a WD from 10
-4

 Lʘ to 10
-5

 Lʘ takes 10
10

 years. 

 

White dwarfs come in two groups:  

1. with a spectrum dominated by H-lines = DA 

2. with a spectrum dominated by He-lines = DB 

 

This distinction is based on the spectrum. But that does not give information on 

the internal composition! The gravity at the surface of a WD is high (~10
8
 

cm/s
2
) and the atmosphere is so stable that gravitational diffusion made the 

Helium settle below the (often extremely thin) H-atmosphere. WD that really 

consist of H (instead of He or C-O) can be distinguished on the basis of their 

mass radius relation! 

 

23.2 The Chandrasekhar Mass-Limit for White Dwarfs 
 

The Mass-Radius relation for WD shows that R will decrease as M increases. 

However, as M/R
3
 increases with increasing mass, the density may become so 

high that the electrons become relativistic degenerate. If the WD is completely 

relativistic degenerate  the EoS is                     .  

Combining this with the H.E. condition gives 

       
             

                     
 so        

 

M = constant for relativistic degenerate white dwarfs. 
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This shows that relativistic degenerate stars can only exist for one specific 

value of the mass. This is the Chandrasekhar mass limit 

 

               
     with μe = 1 for H 

  μe = 2 for He, C, O 

 

In reality this implies that stars with M > Mch cannot exist. They will collapse 

as a Supernova of type Ia (no H lines) = collapse of a C/O white dwarf. 

 

 

 
Fig 23.2  The mass radius relation of a helium or CO white dwarf.   

Dotted line: the R ~M
-1/3

 or V ~M
-1

  relation for non-relativistic degenerate WDs.  

As the mass increases and the radius decreases a larger and larger fraction of the WD 

becomes relativistic degenerate. This is shown by the dotted line. The radius goes to zero 

at the Chandrasekhar limit of 1.46 Msun.  (OP fig. 10.6) 
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24. Stellar Pulsation 
 

24.1 The instability strip in the HRD:  

RR Lyrae stars, Cepheids  and δ Scuti stars.  
 

There is a strip in the HRD where stars pulsate when their evolution track 

passes through it :  the instability strip 

                  -    Low mass metal poor stars  cross this strip during core-He fusion on the   

                       Horizontal Branch, where they are  

                       RR Lyrae stars of spectral type A5 to A7 during maximum  and F1 to F3 

                       during minimum,  with periods of 0.05 to 1 day,  and  L  ~ 10
2
  to 10

3
 Lsun . 

- Massive metal rich stars cross the instability strip when they describe  a 

loop HRD  during the core-He burning phase, where they are  

Delta Cepheids or simply Cepheids of spectral type F5 to F8 during 

maximum with  periods of  1 to 50 days  and  L ~ 3 10
2
  to 3 10

4
 Lsun . 

WW Virginis stars are the metal-poor (Pop II) equivalents of Cepheids. 

- There is even an extension of the instability strip down to the main 

sequence, where they pulsate as 

 Delta Scuti stars of spectral type  ~F3  with periods of 0.1 to 0.2 days.  

                  Both the low mass and the high mass stars also cross the instability strip when  

                  the move from the MS to the Hayashi track during the H-shell fusion phase. 

                  However this transition is so fast that the number of observed variables is much  

                  smaller than in the longer phase of He-core fusion 

. 

All these stars pulsate in the fundamental mode and so their period scales with 

the dynamical timescale:   

 

                                              
 

   
         with C of order unity.  

 
                The pulsation is in fact a standing  pressure wave,  driven in the ionization     

                   zone, and travelling between the stellar center and the open outside.  

                   Because the temperature structure in the different types of stars is not the same,    

                   and so the sound speed crossing time depends on the evolutionary  

                   phase,  the constant C is different for the  different types of variables. 

 

24.2 The κ-Mechanism 
 

RR Lyrae stars, Cepheids and  δ Scutis  are variable because of the κ-

mechanism in the H and He-ionization zone. (κ =  absorption coefficient) 

 

The κ-mechanism works in layers which is partly ionized, because in ionization 

zones the degree of ionization and the opacity can change during compression 

and expansion. 
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To explain this: let us first look at the working of a normal combustion motor 

(e.g. in a car). For an engine to work, it needs heat input in the cylinder at the 

right moment, i.e. when the gas is compressed. This is done by producing a 

spark in the fuel during compression. This spark results in heated gas which 

expands and drives the cylinder upwards. It is crucial that the gas is heated 

when it is compressed!  (If you would ignite the spark at the moment of 

minimum compression, i.e. when the cylinder is at its highest position, the 

motor would not work.) 

 

                    
                 Fig 24.1   The working of a combustion motor. The spark ignites the fuel gas 

                 when the gas is compressed. This heats the gas so its expands. 

       

Compare that with the energy of an ionization zone in a star, i.e. at  2 – 4 10
4
 K. 

In a normal, fully ionized = non-pulsating layer: 

 Compression  ρ↑, ρT↑, κ↓ (because κ ~ ρT
-7/2

) 

 and so: radiation escapes more easily if a layer is compressed. 

 

In a partly ionized = pulsating layer: 

Compression  ρ↑ but T rises marginally because the heat goes into 

ionizing the gas 

   κ↑ and so radiation flow is blocked (trapped)  

    heat input during compression! 

Expansion  ρ↓, T about constant because gas recombines and releases 

energy, κ↓ = energy escapes. 

 

This works like a motor because the ionization layer stores energy during 

compression and releases it during expansion.    
This effect can also be explained in terms of γad  (e.g. CO ch 14, OP ch 10.4).  

A layer is pulsational unstable if  γad < 4/3.  We have seen in Section 5.8 that 

this happens in partly ionized zones.  This is basically the same explanation 

because it also describes how T changes during compression. 

 

In principle this could work in the partial ionization zone of any star, but it only 

produces an efficient pulsation if: 

a. the ionization = pulsating layer is not too deep, otherwise the layers above 

it will damp the pulsation.  This occurs for very cool stars.  Q: why? 

b. the ionization = pulsation layer is not too close to the surface, otherwise 

there is no mass to push up and down.  This occurs for the hot stars. 
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So: stars only pulsate via the κ-mechanism if the partial ionization zone has the 

right depth, i.e. the star has the right surface temperature.  That is the reason 

why there is an instability strip of RR Lyrae and Cepheids in the HRD. 

                              
                    Fig 24.2  The depth of the Helium-ionization zone in stars of different Teff.  

                    In the left model, the star is too cool and the He ionization zone is too deep:  

                    and the layers above it damp the pulsation inside the star. In the right hand  

                    model, the star is  too hot and the ionization zone it not deep enough: there is  

                    not enough mass above the ionization zone to push the ionization zone layer  

                    the middle model the ionization zone is at the right depth for pulsation. 

 

24.3 Pulsating stars in the HRD    (C+O p. 547) 
 

Notice that stars with radial pulsation (Cepheids, RR Lyrae, δ Scuti) are all in a 

narrow T-strip in HRD. This is the strip where the He-ionization zone has the 

right depth. (The H-ionization zone is usually not very efficient: it is too close 

to the surface with not enough material above it). 

 

Fig 24.3  

For stars pulsating in the 

fundamental mode, 
 Cepheids, RR Lyr, and δ Scuti, 

the period scales with the 

dynamical time           

For narrow instability strip this 

translates into a P-L relation 
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                   Stars can also pulsate in other ways: 

                   - radial pulsation in higher n modes, i.e. overtones 

                   - non-radial pulsation modes, in which the star changes shape, e.g. like  

                     Bessel harmonic functions.    

 

                   Non-radial pulsations can be due to  

                   - gravity modes, (g-modes) in which gravity is the restoring force, or 

                   - pressure modes, (p-modes) in which pressure is the restoring force.  

 

                   An  overview of the different types of variables is shown in Fig 24.4. 

 
Fig 24.4  An overview of all types of variable stars and their location in the 

HRD. Notice the main instability strip for radial pulsation that covers the 

Cepheids, RR Lyrae and δ Scuti stars. 

 

24.4      Radial pulsations 
 

                   Radial pulsators  have periods that strictly follow Period-Luminosity  

                   relations,which are due to the fact that pulsations are standing waves with a  

                   sound speed crossing time that is proportional to ρ
-0.5

.  

                   The most accurate P-L relations are those in the infrared, because the IR is in  

                   the Rayleigh-Jeans part of the spectrum, where the magnitudes are less  

                   sensitive to the details of the changes in spectral type.  
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Fig 24.5   

The P versus H-magnitude  

relation of Chepheids in the LMC. 
(Fig CO) 

 

 

 

 

 

 

 

 

 

Fig 24.6 shows the variations in L,  Teff, R and vrad of an RR Lyrae star. 

Notice that the velocity curve and Mbol have a sawtooth shape, with maximum 

luminosity corresponding to maximum outward velocity. This agrees with the 

explanation of the κ-mechanism, which requires that the radiation  that is 

trapped in the ionization zone is released during expansion ! 

Teff  and R are almost anticorrelated,  showing that minimum radius occurs just 

before maximum Teff.  

 

Fig 24.6 

Variation in Mbol, Teff, R 

and v during the pulsation 

of  an RR Lyrae star. 

Notice that Teff and R vary 

almost opposite and that 

maximum L coincides 

with maximum  expansion 

velocity. 
(Fig CO) 
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                   Most radial pulsators pulsate in the fundamental, n=1 mode, in which case  

                   there is only one node. Stars can also pulsate in overtones, n>1.  In that case            

                    there are more  (viz n) nodes. An example of a Cepheid with n=2 pulsation is  

                    shown in  Fig. 24.6. 

 

 

                  Fig 24.6   

                  Schematic picture of a Cepheid  

                      pulsating in the n=2 mode.  

              (Figure from Zima 1999, Master  

                          thesis) 

 

 

 

 

 

 

 

 

 

 

 

 

24.5       Non-radial pulsations (NRP) 

 
                   The pulsation pattern of NRPs is characterized by two quantum numbers (m,l): 

- m  describes the number of meridional nodes.   
m=0 is symmetric around the rotation axis. 

                              m=1 is two opposite moving (east-west) hemispheres, where one half is 

                              moving upward when the other half is moving downward. 

- l-m is the number of nodes in the latitude direction.  

if l=m there are no latitude nodes. 

                    Fig. 24.7 shows the modes for l=3 and different m modes. 

 

 Fig 24.7    

The topology of NRP for l=3 modes  

and different m modes.  

From upper left to lower right:  

(m,l-m) = (0,3), (1,2), (2,1), (3,0)  

     

Notice: m = nr of longitudonal zones 

            l-m = nr of latitudonal zones 

              
(Figure from Zima 1999, Master thesis) 
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25.      The Evolution of Massive Stars 

 

We have seen that massive stars (M > 8 Mʘ) can go through all phases of 

nuclear fusion, up to the Fe-core.  So the internal evolution goes by a series of 

successive fusion-phases, ending with a shell like structure, consisting of shells 

of different compositions. 

 

25.1       Main characteristics of massive star evolution 

 
1 The external evolution of massive stars proceeds mostly along horizontal 

lines in the HRD, i.e. about constant luminosity, because the star does not 

develop a degenerate core and most of the mass is in radiative equilibrium.  

 

2 The luminosity increases slightly during the MS phase  (due to the μ-effect)  

       and when the star briefly reaches the Hayashi limit. 

 

3 The evolution of massive stars is strongly influenced by mass loss.  

                        Stars above 30 Msun typically lose about 15 percent of their mass during the  

                        main sequence phase so the products of nuclear fusion appear at the surface  

                        right after the MS phase. 

 

                  The evolution proceeds differently in three distinct mass ranges 

 

(1) The stars with 8 < Mi < 25 Mʘ become red supergiants (RSG) in their H-

shell fusion phase.  (This is similar to the RGB of lower mass stars, but their 

He core is not degenerate.)   During their He-core fusion phase they make a 

leftward loop in the HRD and temporarily become yellow supergiants. 

(This is similar to the HB of low mass stars). The later fusion phases are all 

spend as a RSG (Hayashi limit). In the end these RSGs  explode as SN. 

So their evolution track in the HRD is quite similar to those of stars of M>4 

Msun but they never develop a degenerate core. 

 

(2) The stars with 25 < Mi   50 Mʘ also become RSG, but their mass loss rate 

is so high that after a short time at the Hayashi limit they have lost most of 

their envelope and move to the left of the HRD. (This is similar to the post 

AGB evolution of lower mass stars, but they do not become WDs). When 

they are in the left of the HRD they have a very high mass loss rate and  

their atmospheres  are dominated by He, N and C. These are Wolf-Rayet 

stars (WR-stars).  They explode as SN in the WR phase. 

 

(3) Stars with Mi   50 Mʘ become instable due to radiation pressure in their 

envelope immediately after the MS,  because they are very close to the 

photospheric Eddington limit. They become Luminous Blue Variables 

with high mass loss rates and occasional eruptions. They stay on the blue 

side in the HRD where they become Wolf-Rayet stars and explode as SN. 
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Fig 25.1 Predicted evolutionary tracks of massive stars with mass loss and overshooting 

are shown in the Appendix E (from Maeder 2009). The figure shows the top part with 

several phases indicated. Left-slanted dashed areas indicate H-core fusion. Right-slanted 

dashed areas indicate later fusion phases. The leftward loops  occur during He-core fusion 

(equivalent to the HB of lower mass stars). The location of the Wolf-Rayet stars and the 

Luminous Blue Variables are indicated. The Humphreys-Davidson limit (HD-limit) is the 

observed upperlimit of stars in the HRD. 
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25.2      The effect of mass loss during the MS phase 

 
The evolution of massive stars is dominated by mass loss. 

 Fig. 25.2 shows the  first calculations of the mass loss on the evolution 

 of massive stars. 

 

          
Fig 25.2  The effect of mass loss during the MS phase of a 30 Msun star. The mass loss is 

specified as dM/dt=N L/c
2
 with N=0,  100  ( = 7 10

-7
 Msun/yr on the ZAMS ) and 300  

(= 2 10
-6

 Msun/yr on the ZAMS). Remember that L/c
2
 is the mass loss rate produced by one 

strong absorbtion line in the wind. The table gives the remaining mass at the end of the MS 

(TAMS) and the MS lifetime. (Fig ISW, from Lamers and de Loore 1978) 

 

 

The figure below shows the first calculations of the effect of mass loss on the 

evolution of massive stars. Evolution without mass loss is “conservative” 

evolution. We call the initial mass Mi and the final mass Mf. For conservative 

evolution Mf = Mi. 

 

Notice that: 

- The luminosity increases less than in conservative evolution. This is 

because the total mass decreases and also the size of the convective core is 

less than in conservative evolution. As a consequence, µ increases less. 

 

- At the end of the MS the star is less luminous than for conservative mass 

loss, but more luminous than expected on the basis of its actual mass, Mf. 

This is because the star has a more massive He core than a star that started 

with a mass Mf and evolved conservatively. 

 

- The MS phase lasts longer due to the lower L. 
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-  At the end of the MS phase the N-abundance increases at the surface: it is 

an ON-star (O for spectral type O, and N for nitrogen). This is because the 

core with convective overshooting has brought N into the radiative 

envelope, up to the point where M(r)~0.9 M*. When the star is peeled of by 

mass loss during the mainsequence to this depth during, the enriched layers 

appear at the surface.  (This is different from the dredge-ups of low mass 

stars, where the enriched matter is brought all the way to the surface by 

envelope convection).  

 

 

25.3      The predicted Photospheric Eddington Limit and the 

              observed Humpreys-Davidson upperlimit. 
 

The photospheric Eddington Limit (Eddington dip) 

 

Massive stars have such a high luminosity that they are close to their Eddington 

limit for radiative pressure.  We have seen that for massive stars with electron 

scattering opacity in their interior, the Eddington limit 

LE = 4 πc G M / σe      3  to 4 10
6
 Lsun  with M   150  to 200 Msun.  (Sect 8.3). 

However in the upper envelope and the photosphere the absorption coefficient 

is higher than σe.  See the peak in κ at T < 10
6
 K for ρ < 10

-8
  in Fig. 6.1 (p 34). 

At photospheric densities  of order 10
-10

 the opacity has a peak around 10 to 20 

kK.  A peak in κ implies a drop in the photospheric Eddington Limit LE(phot) 

because  LE ~ 1/κ. 

 

Lamers and Fitzpatrick (1988) argued that this results in a limit in the HRD that 

has a minimum LE around Teff  10 000 K. Stars that reach that limit when they 

evolve to the right in the HRD after the MS phase will become instable and 

suffer severe mass loss. The situation is sketched in Fig 25.3. 

 

 

Fig 25.3   

The effect of a bump in the 

absorption coefficient in 

photospheres of  

Teff ≈10 000 K results in a 

dip in the photosphere 

Eddington limit, compared to 

the standard (interior) LE. 
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             The empirical Humphreys-Davidson limit (HD-limit) 

 

The observed distribution of massive stars shows a conspicuous absence of star 

above Mbol  = -9.5, corresponding to L=5 10
5
 Lsun.  This same limit was found 

for the Milky Way, the LMC and SMC. (Humphreys and Davidson 1994, PASP 

1026, 1025). On first sight this is strange, because more luminous main 

sequence stars exist, and their evolution tracks are supposed to be horizontal in 

the HRD. This shows that  stars more massive than about 50 Msun  do not 

evolve to the right of the HRD and do not become red supergiants. 

 

Fig 25.5  

 

 The Humphreys-

Davidson limit 

(observed 

luminosity upper 

limit) in the HRD 

of the LMC 
(Fig. Massey 2003, 

ARAA 41, 15) 

 

 

 

 

 

 

 

The observed HD-limit can be explained by the photospheric Eddington dip. 

When stars more massive than about 50 Msun,  (Mbol < -9.5)  leave the MS and 

expand during the H-shell burning phase, they will hit the down-sloping hot 

side of the photospheric Eddington dip and their envelope will become 

unstable. This is the Luminous Blue Variable phase. The stars lose a large 

amount of mass in that phase, until the envelope is no longer massive enough to 

let the star evolve to the right of the HRD. Remember that post MS stars evolve 

to the right, i.e. increase their radius, because their envelopes becomes largely 

convective.  The star then shrinks at constant luminosity and becomes Wolf-

Rayet star.  
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25.4      Luminous Blue Variables (LBVs) 

 
Luminous Blue Variables (LBVs) are very luminous blue supergiants with  

L/ Lʘ > 3 10
5
 that show large and irregular variations in their V-magnitude. The 

variations occur on timescales from weeks to years, with occasional large 

eruptions 

- every year or decade they change their radius: 30 Rʘ → 100 Rʘ. 

After a few to ~10 years the radius goes back to normal. 

- every few 10
2
 to 10

3
 years they have a “large eruption” (ala Eta Carina in 

1860 and P Cygni in 1600) and eject ~ 1 Mʘ of gas. 

 

These stars are found near the HD-limit, indicating that they are marginally 

stable against radiation pressure. LBVs are rare: there are only a handful known 

in our Galaxy. 

 

Fig. 25.6  shows the variations in V of 2 LBVs: S Dor (Gal) and R127 (LMC). 

Notice the large variations up to 1 or 2 magn over a period of about 10 years. 

From: “LBVs: Astrophysical Geysers” (Humphreys and Davidson, 1994, PASP 

106, 1025). 

 

 

   
               Fig. 25.6   Lightcurves of two LBVs:   

               Left : S Dor (Galactic) from JD 2000-9000  (1973-1990).  

               Right: R 127 (LMC) from JD 5000-9000  (1983-1990). 

               Notice the strong but irregular variations of ΔV = 1.5 to 2.0 magn. on timescales  

               of years. (Fig from Spoon et al. 1994, A&AS 106, 141) 

 

               Observations over the full spectrum have shown that the luminosity of the LBV  

               remains approximately constant during these variations! This means that the  

               variations are due to changes in Teff  and in the resulting bolometric corrections.  

               So the variability of LBVs is due to large radius variations, up to a factor 8. 

 

               Figure 25.7 shows the locations of LBVs in the HRD and their variability. When  

               the stars are faint, they are hot (Teff > 15000 K) and most of their energy is in the  

               UV. When they are bright, they are cool (Teff ~8000 – 9000 K) and most of their  

               energy is in the visual. 
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Fig 25.7  The locations of LBVs in the HRD. Each LBV makes horizontal 

excursions from the visual faint (high Teff and small R) to the visual bright (low 

Teff and large R) regions.  (Fig  from Humpreys and Davidson, 1994, PASP 106, 1025 

“LBVs: astrophysical Geysers”) 

 

                  Notice than in the “hot” phase (visual minimum) the stars are very close to the  

                  Humphreys-Davidson limit and to the photospheric Eddington Limit!  

                  In the hot phase they are to the left of the Eddington-dip and in the cool phase  

                  to the right. So the instability of these stars is somehow related to the fact that  

                  their envelopes and photospheres are only loosely bound, but the real reason or  

                  the mechanism is still not known. 
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25.5      Wolf-Rayet Stars (WR) 
 

WR stars are luminous stars (L > 10
5
 Lʘ) that have such a high mass loss rate 

(few 10
-5

 Mʘ/yr), that one does not see the photosphere but only the wind: the 

spectrum is dominated by very broad emission lines formed in the wind with 

velocities of V ~ 2000 – 4000 km/s. Their mass loss rates are high: 2 to 4 10
-5

 

Msun/yr.  (Nugis & Lamers, 2000, A&A 360, 227). 

 

 
fig 25.8  Optical spectra of a WN star and a WC star. The WN star shows 

strong emission lines of H, HeII and NIII and NIV. The WC star has strong 

emission lines of HeII and CIV. The width of the lines indicates outflow 

velocities of ~2000 to ~3000 km/s. The numbers in the classification 6 and 7 

refer to an Teff  scale that goes from 3 (very hot) to 8 (hot )  (Fig from ISW)  

 

 

WR stars are end stages  (=  peeled-off) of  massive stars. 

They are located to the left of the MS at 30 000 K < Teff < 50 000 K and  

10
5
 < L/ Lʘ < 10

6
. 

 

There are three types. In order of age or stage of peeling: 

 WNL = late WN = WR star with strong N-lines and  “late” spectral type, 

Teff   30 000  to 40 000 K. 
  Some H left, He-enriched, N-rich 

  These are very massive stars near end of MS 

 WNE = early WN = N-rich WR stars of early spectral type Teff   40000 K. 

  No More H, He-rich, N-rich, C-poor (= products of CNO-fusion) 

 WC = C-rich WR star 

                     Teff  > 40 000 K. 
                                       No more H; He-rich, C-rich, (= products of He-fusion) 

                                       WC stars are peeled-off further than WN stars. 

 

(There is also a third class WO = O-rich, but that is not an abundance effect but 

a high temperature effect, when the O IV lines become stronger than the C IV 

lines.) 
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25.6     An example of a 60 Mʘ Star with Mass Loss 
 

As an example of the evolution of a massive star with mass loss, we show the 

evolution track and the Kippenhahn diagram of a star of 60 Msun, calculated by 

Maeder & Meynet (1989, AA 210, 155), tabulated  in (1989, AA Supl 76, 411) 

 

 
 

 
 

 

Fig 25.9.  

The evolutionary track, the 

Kippenhahn diagram and 

the surface abundance 

during the evolution of a 

star of 60 Msun . Hatched 

areas indicate fusion 

layers.  Curls indicate 

convective zones. Vertical 

striped regions indicate 

modified abundances. (Figs 

Maeder & Meynet 1989) 
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                 Notice: 

- The upper limit in the lower graph shows the mass that remains. 

(timescale is broken in three sections) 

                  -    The mass of He-core after H-fusion is larger than the Schonberg - 

                        Chandrasekhar limit. So the core immediately contracts after the MS and 

                        He-fusion starts in the core almost right after the MS. (see the KD). 

                        (This is different from low mass stars which have a phase of H-shell fusion: 

                         the RGB phase). 

                  -     In the very short time between the end of the H-core fusion and the He- 

                        fusion, the H-shell is the only energy source, so the H-shell fusion is in a  

                        thick layer. As soon as He-core fusion starts, the H-shell becomes less  

                        massive. 

- Steep mass decrease at 3.7 Myr is due to LBV eruptions. 

- Changes in surface composition in various stages as function of remaining 

mass are shown below. Correlate these with the tracks and try to explain 

them. 

 

 

25.7     Evolution life times of massive stars 

 
                The table below gives the lifetimes (in Myrs) of H-fusion, and He-fusion for a 

grid of non-rotating massive stars (from Maeder & Meynet 1989 A&A 210, 155) 
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25.8     Summary of the Evolution of Massive Stars:  

             the Conti Scenario 
 

Before 1970 there were categories of massive stars with strange properties, e.g. 

the N-rich ON stars, the Of stars with many emission lines, the N-rich Wolf-

Rayet stars (WN), the C-rich Wolf-Rayet stars (WC), the Luminous Blue 

Variables, etc. The evolutionary connection of these stars was totally unknown! 

 

When mass loss from massive stars was discovered in the mid-late 1970s, Conti 

(1976) suggested a scheme for the evolution of massive stars, based partly on 

observations and partly on predictions that connected these different types in 

evolutionary sequences. (Conti 1976, Mem. Soc. Royale des Sciences de Liege, 

9, 193; see also Maeder & Conti 1994, ARAA, 32, 277) 

 

Conti-scenario 

 

 

For M   50 Mʘ (always blue) 

O-star – Of-star – BSG – LBV – WN – WC – (WO) – SN 

 

 

For 25 Mʘ < M   50 Mʘ (blue-red-blue) 

O-star – BSG – YSG – RSG – WN – (WC) – SN (high mass loss) 

                                                 – WN – SN              (low mass loss) 

 

 

For M < 25 Mʘ (blue-red) 

O-star – BSG – RSG – YSG (and Cepheid) – RSG – SN 

 

 

The different types of stars in this scenario are: 

O = O-stars without emission lines (low Ṁ, < 10
-6

 Mʘ/yr) 

Of = O-stars with emission lines (high Ṁ, > 10
-6

 Mʘ/yr) 

BSG = Blue Supergiants (O, B, A) 

YSG = Yellow Supergiant (F, G) 

RSG = Red Supergiant (K, M) 

LBV = Luminous Blue Variable (with Eruptions) 

WN = WR star with N-rich wind, He-rich, some H (high Ṁ, > 10
-5

 Mʘ/yr) 

WC = WR star with C-rich wind, He-rich, no H (high Ṁ, > 10
5
 Mʘ/yr) 

 

NB: The limit of 50 Mʘ is somewhat uncertain. It is between 40 and 60 Mʘ. 

 

  



Astronomy 531 University of Washington Spring 2014 

 

 

 

       179 

26. The Effect of Rotation on Stars 
 

Massive stars are in general rapid rotators, at least on the Main Sequence. 

Rotation affects the evolution of stars in several ways. 

 

i. A rapidly rotating star is not spherical but oblate, with a higher temperature 

at the poles than at the equator. 

 

ii. Rapid rotation in a star produces mediational circulation which can lead to 

severe mixing and to the transport of angular momentum to the envelope. 

This slows down the core and speeds up the outer layers. 

 

iii. The winds of rapidly rotating stars are not spherical: it may be enhanced at 

the equator (due to lower effective gravity) or at the poles due to the higher 

radiative flux. This depends on the effective temperature of the star. 

 

iv. Very rapidly rotating stars of high luminosity may become instable by the 

combination of the large radiation pressure (Γ-effect) and centrifugal force 

(Ω-effect). This results in an ΩΓ-limit in the HRD, which is at lower 

luminosity than the classical Eddington Γe-limit. 

 

26.1 The Von Zeipel Effect 
 

Lines of constant effective gravity, geff = ggrav – gcentr, in rapidly rotating stars 

are not spheres but become oblate, by the centrifugal acceleration, gcent. The 

critical velocity, vcrit, is the equatorial rotation velocity where geff = 0 at the 

equator. 

 

     
 

   
 
     

   
         

     

   
  

         

   
  

 

where we have used               with              to correct for 

radiation pressure by electron scattering (Sect 8.3). Using           we can 

express this in terms of a critical angular velocity   

                                     
   

 

T 

Fig 26.1 

The figure shows the lines of constant  

geff  for a rigidly rotating star, 

 rotating at about half the critical  

rotation speed. (Fig from ISW) 
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                  Lines of constant geff are also iso-potential lines and iso-pressure and 

                  iso-thermal lines. Close to the pole the iso-thermal lines are closer together than  

                  at the equator. This implies that the T-gradient and hence the radiative flux  

                  (local Teff) is higher at the pole than at the equator! 

 

The Von Zeipel Theorem: 

The local radiative flux is proportial to the local effective gravity 

 

               
       

 

     
                                 

     

 

where   is the angular velocity and   is the latitude  ( =0  and π at the poles) . 
The total luminosity is 

 

                         
   

 
  

 

As a result, the Teff  and spectral type at the poles are hotter than at the 

equator. This implies that the spectral type and the luminosity derived from 

observations will depend on the orientation of the rotation axis compared to the 

line of sight! Part of the widening of the MS of globular clusters could be due 

to this effect (de Mink and Bastian, 2010). 

 

The table below gives the mean values for main sequence stars (half way 

between the ZAMS and TAMS)  of  to 120 Mʘ (from Maeder) 

 

 
Notice that MS stars with Mi>2 Msun rotate at about half the critical velocity. 
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26.2 Meridional Circulation 
 

Rapid rotation induces meridional circulation due to shear-forces between 

layers of different rotation speed. This effect is strong on the main-sequence. 

The figures below show the circulation pattern in a MS star of 20 Mʘ (from 

Maeder, Section 11). 

 

    
 

 

Fig 26.2  Two representations of the meridional circulation currents in a 20 Msun MS star, 

halfway between the ZAMS and TAMS.  The initial rotation velocity is 300 km/s.  

Left: schematic. Right: 3-D demonstration of the same pattern.  

The inner sphere is the convective core. The inner circulation cell is rising toward  the 

pole and descending along the equator. The outer circulation is rising along the equator 

and descending  along the poles. (see Maeder Fig 11.2 for a colour version)  

 

Meridional circulation is very efficient for mixing. In general, massive stars 

only have convective mixing and overshooting in their cores. But rapid rotation 

can produce mixing all the way up to the surface during the MS phase. This 

explains the observed correlation between Vsin i and the N/C abundance ratio 

on and near the end of the MS  (Brot et al. 2011). 

 

In the most extreme case, with very fast rotation, the mixing is so severe that 

the star remains chemically homogenous. In that case a massive star evolves to 

the left and upward in the HRD during its H-fusion phase, and evolves 

gradually from the ZAMS for H-stars to the MS for Helium stars, which is to 

the left and higher of the MS for H-stars (remember Homework 2.2). 
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26.3 Non-Spherical Mass Loss of Rotation Stars 
 

The winds from hot stars are driven by radiation pressure. Rapidly rotating stars 

are more luminous at the pole, so they will have  a higher mass loss rate from 

the pole than from the equator.  At the same time, the wind velocity V∞ will 

also be higher at the pole than at the equator, because V∞ ~ Vesc. 

 

However, observations of massive stars often show that the wind density is 

concentrated in the equatorial plane. For instance, Be stars (B main 

sequence stars with optical emission lines)  and B[e] supergiants  (B-type 

supergiants with forbidden emission line) have equatorial outflowing disks. So 

in these stars the wind is concentrated along the equator and not along the 

poles. 

 

This can be explained by two effects: 

a. The density of the wind scales as             
   . So even if Ṁ is higher 

at the pole, the density of the wind may be higher at the equator because V∞ 

is smaller at the equator. 

 

b. The wind changes its characteristics (Ṁ and V∞) around Teff ~ 21000K. This 

is called the bi-stability jump.  We have seen this already in Sect 16.3.3 

and Fig 16.7 which showed that the wind velocity changes drastically from 

2.6 vesc at Teff > 21000 K to 1.3 vesc at Teff < 21000 K. 

At Teff > 21000K the wind is mainly derived by Fe IV lines and at Teff < 

21000K it is driven by lower ionization lines (Fe III etc). This explains the 

jump in V∞/Vesc from 2.6 at Teff > 21000K to 1.3 at Teff < 21000K.  

 

A rapidly rotating star with Teff > 21000K at the poles may have Teff < 21000K 

at the equator.  At some inclination angle between the pole and the equator, the 

structure of the wind may change due to the bi-stability effect, where the mass 

loss increases and V∞ decreases towards the equator. So ρwind increases strongly 

toward the equator. This produces rotation-induced-bistability disks of B[e] 

supergiants  and possibly also the  Be main sequence stars  (Pelupessy  et al. 2000)  

 

 Fig 26.3  

 Left: Mass flux from a rotating star of 

100 Msun and L=3 10
6
 Lsun with a  

rotational velocity of 80% of the critical 

velocity and assuming  Teff =30 000K at 

the pole. Right: the same star with Teff 

=25 000 K at the pole. This star has a 

rotation induced bistability disk . (Fig 

Maeder) 
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27. Late Evolution Stages of Massive Stars 
 

27.1      Fusion phases 
 

The late evolution phases of stars more massive than about Mi ~ 8 Mʘ proceed 

at an increasing speed. This is mainly due to the loss of energy by neutrinos. 

For a star to remain in equilibrium its energy production has to be Ltot = Lrad + 

Lv with Lrad required to maintain hydrostatic and thermal equilibrium and Lv is 

the neutrino loss. The timescale of each phase is approximately 

 

         
  

 
                

 

where Mnucl is the mass of the nuclear material available for fusion.  

 

The table in Sect 25.7 gives the timescales of the H, He and C fusion phases 

for stars of different masses. Notice the very short time of the C-fusion phase, 

less than 10
4
 yr for stars initially more massive than 15 Msun.  The later 

evolution phases go even faster. 

 

The Table below gives the timescales of the different fusion phases for a star of 

15 Msun.  The Ne-fusion and O-fusion lasts about a year, whereas the Si-fusion 

lasts only a few weeks. (from Wooley et al. 2006, ARAA 44, 507) 

 

 

 
 

The table below (from Hirschi et al. 2004 AA 425, 649) gives the lifetimes of 

the different fusion phases for a range of masses. It also shows the mass of the 

different chemical elements at the end of the stable Si-fusion. The last two 

lines give the total mass of Si and Fe when the core collapses. These are 

slightly higher than at the end of the Si-fusion.  

Notice the effect of stellar rotation on the evolution. Fast rotating stars have 

more mixing and higher mass loss rate. 
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                   Fig 27.1 shows the evolution of the centers of stars in the Tc- ρc diagram for 

stars of 15, 25 and 35 Msun. We have argued in Sect 10.11 that the core is 

expected to evolve as  Tc  ~ Mc 
2/3

 ρc 
1/3

 . 

                   The figure shows a slower increase:  i.e. ρc 
0.24

 . This is due to the fact that the 

mass of the core for every next fusion phase is smaller than the previous one. 

 

                  The figure shows that the star settles into a new equilibrium (little wiggles) 

every time the next fusion phase occurs. In terms of time, the evolution of the 

core in this diagram speeds up enormously when it reaches higher 

temperatures. For instance, see the times given in the table for a 15 Msun  star. 

 

Fig 27.1  

The evolution of the cores  

of stars of 15, 25 and 35     

 Msun.  in a Tc - ρc diagram. 
(Fig 7.13 from SC) 
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Fig 27.2 gives the corresponding Kippenhahn diagram of the inner 15Mʘ as a 

function of time until collapse. (During all these phases the star is a red 

supergiant with L ~ 5x10
4
 Lʘ.) The hatched regions are the convective zones. 

Most of these are the core-fusion regions, and fusion shells with the reactions 

indicated. Notice the extremely short duration of the phases. 

 

 

 

 

 

Fig 27.2 

The Kippenhahn 

Diagram of the 

late evolution 

phases of a star 

of 15 Msun, 

expressed as a 

function of time 

until core-

collapse. 

(Fig OP 12.7, from 

Woosley et al. 

2002) 

 

 

 

 

 

 

 

 

 27.2 Pre-Supernovae 
 

Just before a massive star ends as a supernova, it has an onion-skin chemical 

structure with successive layers of fusion products. 

 

Fig 27.3   

The onion skin model of a massive 

star just before the supernova 

collapse. (OP Fig 15.1)  
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The masses of the different cores during the various fusion phases are given in 

the table below, for stars of different initial masses,  and initial rotation,  

Vini = 0, and Vini = 300 km/s.  (From Hirschi et al. 2004)  

Mi is the initial mass,  Mfinal  is the final mass before the star explodes,  

Mi – Mfinal is the mass that is lost during the evolution. 

Mα is the mass of the Helium core after the H-fusion phase,  

MCO is the mass of the CO core after the He-fusion phase,  

MFe is the mass of the Fe core after the Si-fusion phase.   

Mremn is the remnant mass after the SN has exploded. 

 

 
 

Stars with Mi < 25 Msun  (depending on vini) still have substantial amount of 

H when they explode. They end their life as Red Supergiants and produce 

H-rich SNe. 

 

Stars with Mi > 25 Msun (depending on vini)  have  Mfinal = MHe .  So all of 

the H has been lost. They end their life without H.  These are the WR stars 

that produce H-poor SNe. 

 

Notice that the remnant mass of stars of M>40 Msun is about the mass 

of the  Fe-core plus the Si-shell.  For M < 20 Msun the remnant 

mainly contains the mass of the Fe-core. The mass of the Si-shell is ejected. 
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28       Supernovae 
 

28.1     Core Collapse 
 

After the star has developed an Fe-core it runs out of nuclear energy. At that 

time the core has a temperature of  T ~ 4 10
9
 K and a density of ρ > 10

9
 g/cm

3 

(see Fig 27.1)
 
 so the core is relativistic degenerate (see Fig 5.5, left),  

with M > Mchandra ~ 1.3 Mʘ for stars of  Mi > 12 Mʘ (see Table in section 27.2). 

This cannot be stable so the core collapses. 

 

Stars of 8 < Mi < 12 Mʘ  do not reach Si-fusion so they do not produce an Fe-

core. They can still go into core-collapse when at high-densities the electrons 

are captured by heavy nuclei. This reduces the pressure produced by electrons 

and the core collapses. 

 

As the core collapses its temperature becomes so high, T > 10
10

 K that the 

photons are energetic enough to break up heavy nuclei into lighter ones 

  

                            

 

Since this is an endothermic reaction that costs energy, rather than produces it, 

the core quickly cools  and the collapse accelerates. 

 

28.2 The SN Explosion 
 

As the core collapses, and eventually is halted when it is a neutron star, the 

envelope is ejected in the SN-explosion. There are several processes that occur 

at the same time, but the three major effects for the ejection of the outer layers 

are: 

 

a. Bouncing shock at the surface of the neutron star. The matter that falls onto 

the very compact neutron star experiences a shock. The bounce of this 

shock is so strong and so energetic that it runs outward against the infalling 

material and eventually ejects it. 

 

b. During the infall the temperature is so high that the photons create neutrinos 

Photo-neutrino production                
Pair-annihilation             
In the layers just above the neutron star, the density is so high (ρ ~ 10

11
 

g/cm
3
) that the neutrinos can be captured by the infalling gas. This is the 

case in the layers where the optical depth for neutrinos is τv > 1.  

(The layer where τv ~ 1 is called the neutrino photosphere.)  

The capture of the neutrinos by photons, neutrons and heavier particles just 

above the neutrino photosphere suddenly heats up the infalling layers so 
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strongly that the infall stops and is converted into an explosion with mass 

ejection. 

 

c. The fusion in the infalling fusion shells suddenly becomes very efficient, 

due to the increase in T and ρ. This creates a large amount  of energy, that 

heats the infalling layers and produce so much gas-pressure that the 

explode. 

 

These mechanisms work together to eject the layers outside the neutron star. If 

the neutron star captures more mass than about 2 Mʘ, it collapses into a black 

hole. 

 

28.3 Energetics of Supernovae 
 

The energy released during the core collapse when its radius decreases from 

Rci to Rcf  is 

 

           
   

 

   
 
   

  

   
 
    

 

   
                  

 

Assuming that the core collapses from a WD  (Mc ~ 1.4 Mʘ and Rci ~ Rwd ~ 10
4
 

km)  to a neutron star with  Rcf ~ 20 km we find that E ~ 3x10
53

 ergs. 

The potential energy necessary to expel the envelope with mass  

Menv = M – Mc is 

 

    
   
  

  

 

  

  
    

  

   

  

  
   

   

   
                  

 

Where we have used M > Mc ~ 10 Mʘ and Renv >> Rci = Rwd = 10
4
 km. This is a 

severe overestimate because we used Renv ~ Rci. A more realistic model for the 

envelope gives     
   
        erg. 

 

The kinetic energy of the envelope is 

 

    
    

 

 
     

                       if  Menv ~ 6 Mʘ and V ~ 10
4
 km/s. 

 

The peak luminosity of the SN is typically 10
8
 to 10

9
 Lʘ during about 60 days. 

So the radiative energy of the SN is about E ~ 10
48

 – 10
49

 erg. 

 

We see that     
   
     

                   

 

Only a small fraction of the energy released in the core collapse is used for 

ejecting the envelope and emitting light. 

Most of the energy comes out in the form of neutrinos! 
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28.4 Types of Supernovae 

 
The types of SN and their origin is shown in the figure below. 

There are four major types 

Type I  = no H in spectrum 

           Ia = collapsing WD  (from low mass binary system) 

           Ib = iron core collapse no H  (from WR star) 

           Ic = iron core collapse , no H, no He  (from WC star) 

 Type  II = iron core collapse, with H (from Red Supergiant) 

 

                
Fig 28.1 

Different types of SN and 

their progenitors (M fig 

28.9) 

 

 

 
 

 

 

 

 

 

 

 

28.5 The Remnants of Stellar Evolution 
 

Fig 28.2 shows the types of SN and remnants as a function of Mi for Z = 0.02. 

 

- The upper curve shows the mass after He-core fusion. 

 

                  -     The mass of H-rich material expelled (light grey) 

 

                  -     Mα  is the mass of He that is expelled (middle grey) 

 

- Mco is the mass of C and O that is expelled (dark grey) 

 

      -     The mass of the remnants (black) 

 

The fate of stars with Mi > 50 Mʘ is uncertain. The final fate of stars also 

depends not only on their initial mass but also on metallicity and initial rotation 

velocity. 
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Fig 28.2  

 

The remnants of  

stellar evolution.  

 
(M fig 28.13) 
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29. Stellar Yields of Single Stars. 
  
Stellar yields describe the amount of gas and its composition that is returned to 

the ISM during the stellar life cycle. Yields can be calculated for each stellar 

mass. The total yield is the yield per star, multiplied by the relative number of 

the stars, i.e. by the Stellar Initial Mass Function. 

 

Fig 29.1 shows the stellar yields for massive stars in the range of 8 to 120 Mʘ. 

It shows how much mass is ejected at each phase. (O=O-star, BA = A or B 

supergiant, RSG=red supergiant)  

 

 

Fig. 29.1  

 

The fraction of the matter that is 

returned to the ISM during various 

phases, as a function of Mi.  

The narrow strip at the top is the 

mass that remains in the remnant.  
(ISW Fig 12.9) 

 

 

 

 

 

 

                       Fig 29.2  shows the total yield, i.e. the same as above but now weighted with  

                       a Salpeter IMF: N(M) ~ M
-2.35

. 

    

Fig 29.2  

The total yield= 

the mass that is returned to the 

ISM by stellar evolution, 

weighted with the number of 

stars from the IMF 

 N(M) ~M
-2.35

   
(ISW Fig 12.10) 
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The effective yields is the mass fraction of the new heavy elements ejected 

into the ISM by winds and SN from massive stars. 

Fig 29.3 shows the effective yields of massive stars separated by chemical 

elements.   

 

 

Fig 29.3  

 

The effective 

yields: the mass 

fraction of new 

He and new 

heavy elements 

ejected as a 

function of the 

stellar mass. The 

contributions by 

winds and SN 

are separated. 
(Fig from Chiosi & 

Maeder 1986, 

ARAA 24, 329). 

 

 

Notice: 

 

He: - the most massive stars (20 – 120 Mʘ) eject He by their winds. 

 - the lower mass stars eject most of their He in SNe 

 - although the lower mass stars (M < 10 Mʘ) eject a smaller fraction of 

their mass in the form of He than the massive stars. The overwhelming 

number of low mass stars implies that most of the enrichment of He 

comes from low mass stars. 

 

C: - the most massive stars (M > 60 Mʘ) eject C in their winds (as WC stars) 

 - the stars in the range of 10 – 120 Mʘ also eject a large fraction of their 

mass in the form of C by SNe. 

 - the low mass stars (M < 8 Mʘ) also eject C in the form of C-rich AGB 

winds. The overwhelming number of low mass stars implies that most 

of the C-enrichment is these winds of low mass stars. 

 

O: - most of the O-enrichment is by SN of massive stars (M > 10 Mʘ) 

 - the most massive stars (M > 40 Mʘ) also lose O in the form of winds 

from WC stars. 

 

Fe-Si: the enrichment of these elements is due to SN from massive stars (M > 

15 Mʘ) 
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30       Binary evolution    (see O.Pols 2014: Binary Evolution) 

 

30.1       Potential surfaces of binaries 
 

                   In this last chapter we will briefly consider the evolution of interacting  binary 

stars. These are stars whose evolution is affected by the close presence of a 

companion. 

 

                   Fig. 30.1 shows the equipotential surfaces of a binary system with a mass ratio 

of M1/M2=2. 

 

 
Fig 30.1  Left: the equipotential surfaces of a binary system with M1/M2=2, as 

seen from the orbital pole. The thick inner 8-shaped figure is the Rochelobe.  

Right: the depth of the potential wells of this binary system as a function of 

distance x/a from the center of gravity, where a is the separation. Star 1 is the 

heavier one, so it is closer to the zero point and the potential well is twice as 

deep as for M2. The location of the Lagrange points L1, L2 and L3 are 

indicated. The  gray scales indicate three possible stable configurations: dark 

gray = detached systems, light gray = semi-detached systems where one of the 

components just fills its Rochelobe. Light gray = contact systems. (Pols  2014, 

figs 14.1 and 14.2) 
 

                  Matter outside L2 and L3  is still bound to the binary, but  it cannot maintain  

                  co-rotation. 

 

30.2      Contact Phases  
 

                  Binaries start to interact when the size of one of the two components reaches or  

                  overflows the Roche lobe. This depends on their separation  and their radius.  

                  The radius of a star increases during several evolutionary phases:   
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A. during the main sequence phase 

B. during the H-shell fusion phase when the star expands:  

  (evolution towards the RGB for low mass stars and  

   towards the RSG for massive stars) 

C. during the rise along the Hayashi line with fully convective envelope 

         (AGB phase for low mass stars, increasing L for RSG) 

 

                The evolution of interacting binaries is classified in three cases accordingly.:             

                 Case A:  when the first contact occurs during the MS phase 

                 Case B:  when the first contact occurs during H-shell fusion 

                 Case C:  when the first contact occurs when the star is on the Hayashi track. 

               

 
Fig 30.2  The HRD with the evolution tracks of stars between 1 and 25 Msun and the radius 

evolution of three stars of 1.6, 4.0 and 16 Msun. The ranges of radii for evolution in case A  

(MS), base B (H-shell fusion) and case C (climbing the Hayashi track) are indicated by 

dotted lines. The dashed lines indicate the separation between the times when the outer 

envelope is radiative  and when it is convective. (Fig 14.3 of  O.Pols 2014). 
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                  The larger the increase in radius at some phase, the more likely it is that the    

binary reaches contact at that phase.  

 

30.3       Changes in period and separation during mass transfer 
 

                   When one of the binary stars reaches its Rochelobe, matter may overflow to its 

companion.  In the early lifetime of binaries the more massive star is the one to 

reach Rochelobe overflow first, because it evolves on a shorter timescale. In 

that case the donor (d) is the more massive star and the acretor (a) is the less 

massive one. However in later phases the less massive star might be the donor 

that transfers mass to the more massive one. For instance, in the case of a low 

mass red giant with a more massive neutron star companion.  

                    

                   Mass transfer can be conservative (no mass is lost) or non-conservative (mass 

is lost from the system: not all mass lost by the donor reaches the companion). 

 

                   Mass transfer changes the period  and the separation of a binary system. For 

conservative mass transfer of a binaries in a circular orbits the change in 

separation is  (Pols sect 16.1.1).   

 

                     
     

 
      

  

  
     

      

  
  

 

                   This shows that the separation reaches a minimum if Md=Ma, i.e. when the 

masses become equal. The changes in separation and periods due to 

conservative mass transfer are 

 

                         
 

  
   

   

  
  
   

  
       and      

 

  
   

   

  
  
   

  
   

 

                    where the subscript  i  indicates  the initial value. 

 

30.4       Stable and run-away mass transfer. 

 
                   Mass transfer occurs when one of the two components fills its Rochelobe. 

When mass is transferred from a donor to an accretor three properties have to 

be considered: the change in radius of the donor, the change in separation and 

in Rochelobe size, the change in radius of the accretor.  

 

                   Stable mass transfer occurs when the radius of the donor decreases due to 

mass transfer faster than the size of the Rochelobe. In this case the transfer of 

an amount of mass leads to a shrinking of the donor radius and it moves back 

within its Rochelobe. Stellar evolution of the donor will then let the radius 

expand again until it fills its Rochelobe and again transfers mass. This results 

in stable mass transfer on the timescale of the evolution of the donor. This is 

the case for case A transfer. 
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                   Run-away  mass  transfer = dynamically unstable mass transfer occurs 

when the transfer of the mass results in a shrinking of the Rochelobe whereas 

the donor radius does not shrink fast enough or even keeps expanding . In that 

case the mass transfer is so fast that the donor is out of hydrostatic equilibrium.  

                   Run-away mass loss occurs in stars with deep convection zones, i.e  if the 

donor is on the Hayashi track : this happens  in case C mass transfer. 

                   The reason that interacting binaries on the Hayashi track will suffer 

dynamically unstable mass loss is because their luminosity is set by the core 

mass and their Teff is almost constant. This mean that their radius is 

independent of the mass of envelope. So as an AGB star transfers mass to a 

lower mass companion, their separation decreases which decreases the 

Rochelobe volume,  so more of the envelope mass of the ABG star will be 

transferred. etc. This will end when the star has lost almost all of its envelope 

                   and contracts on its way to become a WD, or a WR-star  if it is massive. 

 

                   Unstable mass transfer on thermal timescale is in between these two 

extremes.  In that case the donor is out of thermal equilibrium (energy 

balance), but the mass transfer is slow enough for the donor to remain in 

hydrostatic equilibrium.  (The time scale for mass transfer is slower than the 

dynamical timescale). Readjustment to thermal equilibrium occurs on a Kelvin 

Helmholtz timescale, so in this case the mass transfer is self-reguating and the 

timescale is the Kelvin-Helmholtz timescale. This happens in stars with 

radiative envelopes, i.e. in case B transfer of massive stars that are expanding 

after the MS but do not yet have reached the Hayashi track. 

 

30.5       Case A transfer = Algol systems. 

 
              We discuss one typical example of case A mass transfer:  an Algol binary 

                

 

Fig 30.3   

The evolution tracks of the two 

components of a binary of 10 + 8.9 

Msun with  P= 2.2 days initially. 
 (O.Pols, 2014 Fig 17.2) 
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                   Between point B and C  (the star is still on the MS) the primary transfers mass 

to the secondary. The primary loses mass and gets fainter. At C it has lost 4 

Msun and so M1=6 Msun and M2=12.9 Msun. After C it evolves more or less as a 

normal star of lower mass (HB and AGB). The secondary gains mass between 

B and C while it is still on the MS and so it moves up along the MS.  

                   When the mass of such a star exceeds that of the turn-off point of a cluster, it is 

a blue straggler. 

 

30.6       Case B transfer = massive interacting binaries   
 

                   When massive stars cross the Hertzsprung gap, i.e. when they move in the 

HRD from the MS to the Hayashi track,  their radius may reach the Rochelobe 

and the star transfers mass. In this phase the expansion of the donor is on the  

Kelvin –Helmholtz timescale and so as the orbit shrinks, the  mass transfer rate 

is much higher than in case A transfer. 

 

Fig 30.4   

Case-B mass transfer 

of a binary of 10 + 8 

Msun with an initial 

period of 12 days. The 

evolution tracks of both 

stars are shown. 

(O.Pols 2014, Fig 

17.3) 

 

 

 

 

 

 

 

 

 

 

 

                  The transfer starts at point B, when the primary is crossing the Hertzprung gap 

and continues to point D. The low L at point C corresponds  to the maximum 

transfer rate because the star is out of thermal equilibrium. The star has the 

tendency to shrink due to mass loss (because the envelope is still mainly in 

radiative equilibrium) but at the same time its internal evolution  forces it to 

expand. A considerable fraction of the energy from the H-shell fusion is used 

for the continuing expansion of the envelope.  

                   The mass transfer keeps going until the stars have reached equal mass and the 

separation reaches its minimum value. However as the donor keeps expanding  

the mass transfer continues on the Kelvin-Helmholtz timescale of the donor.               
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                   At point D Helium  is ignited in the core and so the star makes a blue loop in 

the HRD. The accretor is still on the MS and becomes more massive and more 

luminous. 

 

30.7       Case C  = Unstable mass loss 
 

                  If  mass transfer occurs when the donor is on the Hayashi line, the mass transfer  

                  will be unstable. This will lead to a rapid shrinking of the orbital separation. 

                  The result will be a common-envelope star. 

                   When stars are on the Hayashi line, their radius can reach such high values  

                   that case-C mass transfer may occur for a large range of  initial periods and 

separations. Therefore, common envelope evolution is not a rare fate of 

binaries. 

 

30.8        The evolution of high mass X-binaries 

 
               The evolution of a high mass binary system, leading to the formation of a high  

                    mass  X-binary, like LMC-X3, is shown in Fig. 30.5 

 

    

 
 

Fig 30.5.  The evolution of a close binary of 71.9 + 8.6 Msun with a period of 132.9 days.  

Notice the different sizes of the first (left) and later (right) phases. The disk like structure 

indicates that spin-up has occurred, and that the secondary cannot accept the mass lost by 

the primary. It is lost in a wind on goes into a circum-binary disk. 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       199 

a: initial configuration.  b:  the primary fills its Rochelobe as a red supergiant which 

results in run-away mass loss. The star goes through a common envelope phase with 

spiral-in. 

c: at the end of the common envelope phase, the primary has lost almost half of its mass, 

from 63.8 to 31.6 Msun, and the orbit has been shrinking from about 500 Rsun (P=164.3 

days) to less than 10 Rsun (P=0.5 days)!  e: the primary explodes as a supernova, leaving a 

remnant black hole of 13.6 Msun.  f : the secondary fills its Rochelobe and transfers mass 

to the BH via an accretion disk. (Pols 2014, Fig 20.2) 

 

30.9    The formation of  low mass X-binaries. 
 

               Fig. 30.6 shows the evolution of system of system of 10 + 1 Msun with a period of  

              300 days, that leads to the formation of a low mass X-binary system. 

 

     
 

Fig 30.6  Notice the different size scales between the first (left) and the later (right) phases. 

b: The primary fills its Rochelobe when it has a He core of 2.5 Msun on the red giant 

branch.  c: the primary has lost 8.5 Msun and the friction has lead to a significant spiral-in 

of the orbit, from about 300 Rsun to about 3 Rsun.  The primary is now a Helium star. 

d: the Helium star explodes as a SN, leaving behind a neutron star of 1.35 Msun and a main 

sequence star.  e: Due to tidal interaction, the orbit circularizes resulting in a 1 Msun  MS 

star and a neutron star in a tight orbit. (Pols 2014, fig 20.3) 
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   THE END 
 

 

I hope you enjoyed this class 

(I did) and that what you 

learned is useful for you. 
 
 

Good luck with your research and your 

career in astronomy! 
                  
Henny Lamers 

              Seattle June 4, 2014 

           h.j.g.l.m.lamers@uu.nl 

 
PS1: If you have questions, contact me by email 

 

PS2: in case you wondered:  H.J.G.L.M. = 

         Hermanus Johannes Gerardus Lambertus Maria 

mailto:h.j.g.l.m.lamers@uu.nl


Astronomy 531 University of Washington Spring 2014 

 

 

 

       201 

 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       202 

Appendix B1 
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Appendix B2 
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Appendix B3 
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Appendix C1 
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Appendix C2 

 

 
 

 



Astronomy 531 University of Washington Spring 2014 

 

 

 

       207 

Appendix D 
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Appendix E 
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Appendix F 

 
 

 


